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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA
I. REFLEXION AND TRANSMISSION OF LARGE
AMPLITUDE SHOCKLESS PULSES AT AN INTERFACE

By H. M. CEKIRGE anxp E. VARLEY
Centre for the Application of Mathematics, Lehigh University

(Communicated by Sir James Lighthill, F.R.S. — Received 17 April 1972)
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Techniques which can be used to analyse the interaction of large amplitude elastic waves in a bounded
medium are described. Although presented in the context of uniaxial stretching deformations in an
elastic string or bar, these techniques can be used to analyse the behaviour of any system whose response
is described by the nonlinear one-dimensional wave equation. In this first paper the bounded medium is
contained between two parallel planes which separate it from other similar media. These are of semi-
infinite extent along the axis of propagation which is normal to the interfaces.

The paper is in two parts. In the first part the reflexion and transmission of an incident pulse when it
arrives at an interface with a semi-infinite medium is described and the ideas of nonlinear impedance,
reflexion coefficient and transmission coefficient are introduced. The results are quite general: no special
forms for the stress—strain relations of either elastic materials is assumed. The results for a single interface
are used to analyse the decay of a pulse as it moves back and forth between two interfaces. This decay
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262 H. M. CEKIRGE AND E. VARLEY

occurs because at each contact with the interface energy is radiated across the interface to the surrounding
medium. The algorithms obtained have simple graphical interpretations. The general theory is used to
discuss the decay of a pulse in a layer of saturated soil which is bounded from above by sea water and
from below by rock. This pulse is triggered by a seismic disturbance deep inside the rock. The theory is
also used to analyse the decay in the oscillation which occurs in a shock tube when a diaphragm separat-
ing air at high pressure from air at atmospheric pressure is ruptured. The bound gas is contained between
the closed end of the tube and the contact discontinuity which is generated when the diaphragm bursts.

In the second part of the paper a more detailed account is given of what happens when a pulse is
partially reflected and partially transmitted at an interface. This is achieved by noting that the responses
of many elastic materials can be correlated, both qualitatively and quantitatively, by a family of stress—
strain laws for which the governing nonlinear equations for this problem can be solved exactly. These laws
are sufficiently general to locally curve fit any prescribed stress—strain law to an error O([strain]*) in some
vicinity of the unstrained state. They can also be used to fit the response of a polytropic gas during
isentropic flow to within an error of 1 9, as the density changes by a factor of ten! The reflexion of a
large amplitude pulse from rigid and perfectly free interfaces is given special emphasis as is the reflexion
from an interface with a Hookean material.

1. INTRODUCTION

Most of the analyses which describe the behaviour of large amplitude waves in elastic materials
deal only with progressing waves. The problem of what happens when such waves are reflected
from material boundaries has received comparatively little attention. The only significant results
which describe the effect of material nonlinearity on waves in bounded media have been ob-
tained in the small amplitude limit when the effect of locally small nonlinearity accumulates to
produce a first-order contribution to the disturbance. (A general representation of such small
amplitude wave motions was derived in a recent paper by Mortell & Varley (1970).) However,
the dynamic responses of many materials are, in fact, grossly nonlinear for the applied tractions
to which they are often subjected. For example, foams, some rubbers, soils and clays can harden,
or lock, appreciably during uniaxial compression, while collagen tissue and vulcanised rubbers
harden in extension. Many polycrystalline solids, on the other hand, soften in compression while
gases, which can also be regarded as elastic media, soften in extension. Of course, most of these
materials only behave elastically under certain circumstances. Hysteresis effects can play a
significant role. Most polycrystalline solids, for example, only behave elastically during com-
pression: during unloading the stress-strain relation differs from particle to particle. Even so,
over the times when the material response is essentially elastic, the effect of nonlinear wave
interactions can play a dominant role. It is the purpose of this and future papers to describe
techniques which can be used to analyse the essential features of some of the more important
large amplitude wave interactions which occur in bounded elastic materials. The development
of such techniques is necessary before the effect of more complicated material responses on the
dynamic behaviours of bounded materials can be analysed.

In this paper we describe some of the main features of the decay of large amplitude distur-
bances in a slab of elastic material which is contained between two parallel material planes, or
interfaces. In the main the deformation is produced by uniaxial stretching waves which propagate
in directions normal to the interface. Each interface separates the bounded material from some
other elastic material which is also being stretched in the same direction. This surrounding
material, which could be air, is of semi-infinite extent in a direction normal to the interface in
the sense that, over the time (¢ > 0) the disturbance is analysed, any energy which may be
reflected from its other boundaries does not appreciably affect the disturbance in the bounded
medium. The disturbance can be thought of as triggered by some known forced motion of one
of the interfaces before ¢ = 0, or by the wave which is transmitted into the slab when a wave
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travelling through one of the surrounding materials is incident at one of the interfaces prior to
¢t = 0. An example of the first situation, which is discussed in some detail, occurs when a gas
which was contained at a high pressure between the closed end of a shock tube and a diaphragm
is set in motion when the diaphragm bursts. The initial discontinuity at the diaphragm splits
into two waves: a constant strength shock wave which moves away from the closed end of the
tube and a centred expansion wave which moves towards it. It is this expansion wave that
triggers the disturbance in the gas which is bounded by the rigid wall and the contact dis-
continuity, or material plane, which is also generated when the diaphragm bursts. After com-
plete reflexion from the closed end of the tube the expansion wave is partly reflected and partly
transmitted at the contact discontinuity. The transmitted wave ultimately catches up with the
shock where it too is partially reflected. The analysis presented is only valid for times when this
reflected wave has no effect on the gas between the wall and the contact discontinuity. A good
example of the second situation, which is also discussed in some detail, occurs in a layer of
saturated soil which is bounded by sea water from above and by rock from below when a stretch-
ing pulse crosses its interface with the rock. This pulse could be triggered in the rock by a seismic
disturbance at a point which is deep compared with the distance between the two interfaces.
Then, the pulse is essentially plane as it traverses the saturated soil. The analysis is only valid for
times when the energy which is reflected from the interface between the sea and the atmosphere
has a negligible effect on the deformation of the saturated soil.

This paper only deals with large amplitude shockless waves. It is in two parts. In the first
part we show how to calculate the decay in the amplitude of a pulse as it moves back and forth
between free interfaces. During each contact with an interface part of the energy of the pulse is
radiated to the surrounding medium. No account of the change in shape of the pulse is given.
This rather crude, but sometimes sufficient, information can be obtained without restricting the
forms of the equations of state of either the bounded or surrounding elastic media. The results
are quite general. In §4.1 we show how to calculate the amplitudes of the reflected and trans-
mitted pulses at an elastic—elastic interface as a function of the amplitude of the incident pulse.
This is possible because as long as the transmitted pulse does not develop shocks it is a simple
wave. In such a wave the relation between the normal traction and material velocity is deter-
mined by the stress—strain relation of the transmitting material. It is independent of the detailed
shape of the pulse which is transmitted. Since both traction and normal velocity are continuous
at the interface this relation holds on either side of the interface and, in fact, completely deter-
mines the reflexion and transmission characteristics of the interface. A discussion of these
characteristics is greatly simplified by introducing the ideas of the nonlinear impedance, the
nonlinear reflexion coefficient and the nonlinear transmission coefficient of an interface. These
quantities occur quite naturally in the analysis and are simple generalizations of those which
occur when analysing the reflexion characteristics of an interface separating Hookean materials.
For finite amplitude waves, however, these coefficients are functions of the current traction at the
interface.

In §4.2 the results established in §4.1 for a single interface are used to calculate the change
in the amplitude of a pulse after multiple reflexions from both free boundaries. The amplitudes
of the transmitted pulses at each contact with an interface are also calculated. The algorithms
derived have a simple graphical interpretation. In §§ 5 and 6 the general theory is used to provide a
detailed account of the decayin thestrengthsof pulsesinashock tubeandinalayerof saturated soil.

The results which are described in the first part of this paper can only be used to calculate the
’ 22-2
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264 H. M. CEKIRGE AND E. VARLEY

change in strength of a pulse. They cannot be used to calculate its change in shape, or the de-
tails of the deformation it produces, as it moves back and forth. It seems a hopeless task to make
any really significant headway with this formidable problem without specifying some definite
form for the relation between the stress 7"and the strain e. In practice, for solids this relation is
usually determined from experimental data and to the same error that 7"and ¢ can be measured
experimentally this data can be curve fitted by any one of a host of analytic expressions. Usually
power laws are tried. Bell (1968), for example, in his extensive study of the dynamic responses
of polycrystalline solids during uniaxial compression has shown that the experimental data can
be fitted over some range of ¢ by a simple parabolic law. However, even with such a simple
stress—strain relation the governing hyperbolic equations cannot be integrated except, of course,
when the deformation is generated by a progressing simple wave.

In the second part of this paper we show that the responses of many diverse elastic materials
can be correlated, both qualitatively and quantitatively, by the family of stress—strain laws for
which T'is related to ¢ by equations of the form

2T _(dT\t _(dT\%
W=/£($) +v a) s (1.1)

where 7 and ¥ are material constants. In §7 it is shown that for this family of model equations of
state the equations which govern the deformation simplify considerably and many important
problems which involve the interaction of large amplitude elastic waves can be solved exactly.
In §8 a detailed account of the material responses which can be described by these laws is given.
First, in §8.1, it is shown how the parameters # and ¥ must be chosen so that the corresponding
model stress—strain relation can locally approximate any given stress—strain relation in some
vicinity of (T, ¢) = (0, 0) to within an error of O(e*). In §8.2 we show that the parameters (7, 7)
can also be chosen so that the equation of state of a polytropic gas during isentropic flow can be
approximated over a strain range 0 < ¢ < 9 (which corresponds to the density changing by a
factor of 10) to within an error which is less than 1 %! The values of the parameters are given
when the isentropic exponent y = 3, 1.4 and 1.0, Comparisons between the exact pressure—
density relations and the model pressure—density relations are given in tables 1 to 3. In this
same section it is shown that Bell’s parabolic law can also be approximated by one of the model
laws to an error of less than 1 9, over the range of strain where Bell’s law provides a good fit to
the experimental data. The parabolic law and the model law are compared in table 4.

In §§8.3 and 8.4 a detailed description is given of the four main types of material reponses
which can be modelled by stress—strain laws which satisfy equation (1.1). These responses are
depicted in figures 8 to 11. Figure 8 illustrates the typical response of a soft material, or, more
strictly, of a material which softens relative to some reference state where (7,¢) = (0,0). For
such a material the sound speed A[oc (d7/de)#] decreases monotonically, from its value 4, in
the reference state, as e either increases or decreases monotonically. However, 4 necver gets
below some limiting value 4., < 4,. The model stress—strain law is completely determined once
Ay, 4, and some parameter 77, which measures the rate at which 4 changes with ¢, are specified.
However, these three parameters can be specified arbitrarily.

When, for all practical purposes, 4, = 0 a soft material is called ideally soft. Figure 9 illus-
trates the typical response of such a material. The stress 7" can only vary in the range [0, 71],
where the limiting stress 71 is a material constant. The model law is uniquely determined once
A,, T and the parameter ¢, = ¢ when T = 0.9973, are specified.


http://rsta.royalsocietypublishing.org/

'y
/’A\\
I~
L A

L/;

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Figures 10 and 11 illustrate the behaviours of hard and ideally hard materials. For a hard
material 4 increasing monotonically with either increasing or decreasing ¢ but never exceeds a
limiting value 4, > 4,. The model law is uniquely determined once 4, 4., and ¢; are specified.
For an ideally hard material 4,, = co and ¢ can only vary in the range [0, ¢;]. The model law is
uniquely determined once 4, ¢; and the parameter 7, = 7"when ¢ = 0.99¢;, have been specified.

In general, of course, we do not expect that the model laws described in §8 will curve fit the
actual response of any material with the same accuracy as it does an inviscid gas, or a solid
which obeys Bell’s parabolic law. However, it is hoped that by a judicious choice of the free
parameters in those laws the broad qualitative features of the behaviour of many materials can
be inferred from a knowledge of the behaviour of the model materials.

In §9 we show that the reflected and transmitted pulses which are generated at a free interface
by the arrival of a large amplitude, but shockless, incident wave can readily be calculated
analytically when the model stress—strain laws are used. Although the analysis is valid for an
arbitrary incoming pulse, the case when this pulse is a centred wave separating two uniform
states is discussed in detail. Such waves are produced by impacting materials which soften in
compression or by suddenly pulling materials which soften in extension. The cases of perfectly
free and perfectly rigid interfaces also receive special study as does the case when the response
of the surrounding medium is lincar.

Although the mathematical techniques which are described in this paper are motivated by
considering large amplitude waves in elastic materials they are directly applicable to any
system whose response is governed by the nonlinear wave equation. For example, the problem
which is discussed in §9 is of immediate relevance in transmission line theory where a nonlinear
dielectric, such as a ferrite, is often placed in a linear transmission line to produce short rise times.
The problem of the reflexion and transmission of pulses at an interface is also of great interest in
nonlinear optical devices which use laser beams. Some of these applications will be discussed in
future papers.

2. UNIAXIAL STRETCHING WAVES IN A BOUNDED ELASTIC MEDIUM

To fix ideas, we first consider the uniaxial stretching of an elastic bar or string which is bounded
by two parallel material planes which are normal to the direction of stretch. The deformation of
the medium is referred to a configuration R where the two bounding planes are a distance D
apart. In R the medium is in a uniform state. The normal traction on all planes which are ortho-
gonal to the stretch direction is constant, = 7;, and the material is at a constant density p,.
In the deformations considered, material surfaces which at any time are plane and parallel to
the bounding planes remain plane and parallel at all subsequent times. Each such material
plane is tagged by its distance X from one of the bounding planes when the material is in the
reference state R. Then, the normal traction 7°(X,?¢) per unit undeformed area on the plane
X = constant at time ¢ is related to its velocity u(X,¢), which is normal to the plane, by the

equation
oT Qu

x = Py (2.1)

The material velocity is given in terms of the current distance

=x(X, 1) (2.2)


http://rsta.royalsocietypublishing.org/

\
W\
A

'y
A

yA

A

J

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

i\ \
o
A A

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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of the plane X from the bounding plane X = 0 by
u = 0x[0t. (2.8)
The material strain ¢, computed relative to the configuration R, is given by
¢ = 0x[0X—1. (2.4)
According to equations (2.3) and (2.4) « and ¢ are related by the compatibility condition
Ouf0X = Oef0t. (2.5)

Equations (2.1) and (2.5) are the Lagrangian statements for the changes in linear momentum
and density, which is given in terms of p, and e by
. p=po(l+e)t (2.6)
at a particle.
When the dynamic response of the medium is isotropic and homogeneous with respect to R
the traction
T =2(e) (2.7)

is a known function of the strain e. When (2.7) is inserted in equation (2.1) it reads

Oe  Ou
2 —_— e —
A3(e) P GRETE (2.8)
1 dX\#
e = | — — 2.9
where Ale) (Po de) . (2.9)

Equations (2.5) and (2.8) govern the variations of the kinematic variables ¢(X, {) and u(X, ).
Once these are calculated equation (2.3) can be integrated, subject to appropriate initial con-

ditions, to determine x(X, ¢).
2.1 Riemann’s representation

Large amplitude disturbances which are governed by equations (2.5) and (2.8) are best
studied by re-writing these equations in a form first proposed by Riemann. To do this it is con-
venient to use # and a new strain measure

‘= f “A(s) ds, (2.10)
0

rather than u and ¢, as the basic dependent variables. Then, if the equation of state (2.7) is
written in the form

T = T(c), (2.11)
equations (2.5) and (2.8) can be written
oc ou ou oc
where the material function
1d7T
O . 2.13
A(e) o >0 ( )

Note that u, ¢ and 4 all have the dimensions of velocity. If equations (2.12) are subtracted, the
equation which is obtained states that the Riemann variable

Sf=1%(—u) (2.14)
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is invariant at any one characteristic wavelet, (¢, X) = constant say, at which X varies with ¢

according to the law
dXyde|, = A(c). (2.15)

Similarly, if equations (2.12) are added it also follows that the Riemann variable
g=*%(c+u) (2.16)

is invariant at any one characteristic wavelet, (¢, X) = constant say, at which X varies with ¢

according to the law
dX/dt|; = —A(e). (2.17)

At the o = constant characteristic wavelet

dx ox dX ox

T=uT @ oax =Lt (2.18)
where, by (2.4), the local sound speed |
a(c) = (1+e) A. (2.19)
Similarly, at the # = constant characteristic wavelet
dx/dt = u—a. (2.20)

For definiteness in what follows, each characteristic wavelet of the a-wave is tagged so that
at the material boundary X = 0, o ={, (2.21)

and each characteristic wavelet of the f-wave is tagged so that

at the material boundary X = D, f=1t. (2.22)

Then, if f=Ft) at X=0, andif g=G(@{) at X=D, (2.23)
according to the Riemann relations (2.14) to (2.17) for all (£, X) with0 < X < D

f=F(a) and g=G(f), (2.24)

so that, by (2.14) and (2.16),
¢c=G(p)+F(a) and u=G(f)—F(a). (2.25)

The representations (2.25), with (¢, X) and (¢, X) determined from conditions (2.15), (2.17),
(2.21) and (2.22), hold for any disturbance in the elastic slab. For the purpose of this paper the
problem of determining a specific deformation can roughly be divided into two parts:

(1) that of determining the form of the signal functions F(a) and G(f) carried by the a-wave and
fS-wave components of the disturbance from given initial and boundary data; and

(ii) that of determining the functions «(¢, X) and f(f, X) so that the state variables can be
determined as functions of (¢, X).

2.2. Linear theory: Hooke’s law

For a medium which obeys Hooke’s law problem (ii) can always be solved without knowing
the signal functions F(2) and G(f). For then, because

T = T+ Eye, (2.26)

where E, > 0is a material constant,

A = (Eylp,)* = constant, = 4, say, (2.27)
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and equations (2.15) and (2.17) integrate, subject to conditions (2.21) and (2.22), to give

X X-D
“:t_?l—o and f=1i+ T

(2.28)

The statements (2.25) and (2.26) imply that if any deformation in a material which obeys
Hooke’s law is described in terms of Lagrangian coordinates it can always be represented as the
superposition of two components which do not intereact. A non-distorting, non-attenuated, progressing
wave (the a-wave) moving to the right which carries the signal F(a) and a similar wave (the f-
wave) moving to the left which carries the signal G(f). Since the solution to problem (ii) is
always given by the expressions (2.28), the whole problem of analysing any deformation in a
Hookean material reduces to problem (i) — the determination of the signal functions (o) and
G(p) carried by these waves from prescribed boundary and initial data. Since, according to

equations (2.26), at X = 0: t=o = f+D|4, (2.29)

while atX=D: t=pf=a+D[4, (2.30)

the problem of determining F(et) and G(f) from prescribed conditions on the variations of u and
¢(= Aye) at X = 0 and X = D usually reduces to solving difference equations.

The use of Lagrangian coordinates (X,f) rather than Eulerian coordinates (x,t) greatly
simplifies the description of the wave motions which are described in this paper. The first sim-
plification is obvious. When the boundaries of the medium are material planes, as they are
throughout most of this paper, they correspond to the fixed coordinate lines X = 0 and X = D
in the (X, ¢) plane. By contrast, their images in the (x,t) plane are not usually known a priori,
but must be calculated as part of the solution. In addition, as we will show, the description of the
interactions between the o and £ waves is considerably more complex in the (,f) plane than in
the (X, t) plane. Thisisimmediately obvious for a Hookean material. For suppose that the medium

was in the reference state R at £ = —oco. Then, according to equations (2.3), (2.25) and (2.28)
x=X+G(p)~F(x), (2.31)
A @ N 4
where F(a) =f F(s)ds and G(f) :f G(s) ds. (2.82)

Equations (2.28) and (2.31) imply that the characteristic parameters o and £ are related to
(x,¢) by the implicit relations

_ x d(e,p) ., x=D d(a,p)
OC—t-—ZE’-I—“*-Z;-‘ and ﬂ—t‘l‘—m““—‘"—zg‘“, (2.33)
where the particle displacement  d = x— X = G() ~F (e). (2.34)

Consequently, whereas the variations of @ and /" with (X, ¢) do not depend on the signal function
G the variations of @ and F with (x, t) do. In a Hookean material, although the ¢-wave component
and the p-wave component do not interact in (X, ) space they do interact in («, ¢) space. Usually
the interaction in (¥, ) space is neglected and the function F(¢ — [ X[4,]) is formally approximated

by F(t—[x/4,]). Since
X d X
fe3) 2o
4y -1 4y 4, Ay

Fla) Fla)
~ 1 o@), (2.35)
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a necessary condition for the error in this approximation

Fe-T/A)) || ope <
R AT 1l tobe <1 (2.36)

is that that amplitude of the particle displacement

ld] < 2, (2.37)
_ 4 | Fe)
where A, = Af’ ) (2.38)

is the local wavelength of the a-wave. Since |d| can increase as the width D of the transmitting
medium increases without violating the condition that the stretch ¢ is small enough to use Hooke’s
law, condition (2.37) can easily be violated.

3. MATHEMATICALLY EQUIVALENT SYSTEMS

Equations such as (2.5) and (2.8) also govern the nonlinear responses of many other physical
systems. For easy reference in what follows, in this section we list two other mechanical systems
whose responses can be described by the analyses presented in this paper. These nonlinear systems
have electrical and optical analogues.

3.1. Inviscid gas

An inviscid gas is an elastic medium whose strain energy is a function of the density and

entropy only. In particular, for uniaxial isentropic flows the hydrostatic pressure p (= — T) is a
function of the stretch ¢ = (po/p) — 1. For the special case of a polytropic gas

? (p )V : r -

== or, equivalently, = = (14¢)77. 3.1

o q v = (140 (3.1)
For a gas Hooke’s law (2.26) is often written

p = po+Eo(1—[polp])- (3.2)

This is often referred to as ‘the tangent gas law’ or as ‘the y = —1 gas’.

3.2. Shear waves

If the slab of elastic material is incompressible and if the deformation is produced by uni-
directional shear forces at the bounding planes the resulting shear deformation in the slab is
also described by equations (2.5) and (2.8). Then, however, T(X,t) and u(X,¢) are the shear
force and material velocity in the direction of shear at the material plane X = constant which
has no normal component of velocity. The transverse velocity « and shear strain ¢ are given in

terms of the transverse displacement :
y=y(X,) (3.3)

u = 0y[0t and ¢ = Oy/0X. (3.4)

of any material particle by

If the material response is isotropic with respect to R then X(¢) in equation (2.7) must have the
special form

2 = ep(le]): (3.9
T(—e) = —T(e). (3.6)

this form insures that

23 Vol. 273. A.


http://rsta.royalsocietypublishing.org/

'y
fA \
o \

L A

L/;

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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The Riemann representation of the deformation given by equations (2.14) to (2.17) is still
valid but now the Lagrangian sound speed

1 d 5
A= 2 i Uelge)) | = 44D, (3.7
where le] = :]A ds. (3.8)

Usually, for no apparent physical reason, in the limit of small strains condition (3.6) is satisfied
by assuming that ¢ is an analytic function of |¢|? = ¢* so that d¢/d|e| = 0 when |¢| = 0. One
consequence of this assumption, which is not substantiated experimentally, is that shocks
cannot form at the front of a transverse wave which is propagating into a region where ¢ = 0.

4. DECAY OF FREE VIBRATIONS

This paper is mainly concerned with an analysis of large amplitude free vibrations in media
whose responses are governed by equations of the form (2.5) and (2.8). A simple example of
such a vibration occurs in a nonlinear elastic string when its ends X = 0 and X = D are suddenly
displaced and then held fixed. Another example is the vibration which is set up in an elastic
bar, or crystal, when it is suddenly loaded by a normal traction at one of its ends, X = 0 say,
which is then released to vibrate freely. Here, the other end, X = D is either held fixed or is
also allowed to vibrate freely. A good example of a more complicated vibration which can also
be described by the analysis occurs in a layer of saturated soil which is bounded by sea water
from above and by rock from below when a stretching pulse crosses either of its boundaries.
This pulse could be triggered in the rock by a seismic disturbance or by an underground explosion
at a point which is deep compared with the depth of the soil-rock interface. Then, the pulse is
essentially plane as it traverses the saturated soil.

As an application of our results to gas flows we also consider the vibration which occurs when
a gas which was contained at a high pressure between the closed end of a shock tube and a
diaphragm is released by bursting the diaphragm. The initial discontinuity at the diaphragm
splits into two waves: a constant strength shock wave which moves away from the closed end of
the tube and a centred expansion wave which moves towards it. The expansion wave is totally
reflected from the closed end of the tube and then, in turn, is partly reflected and partly trans-
mitted at the contact discontinuity, or material plane, which was generated when the diaphragm
burst. The transmitted wave finally catches up with the shock where it is partly reflected and
partly dissipated. The theory which is developed in this paper will describe some of the main
features of the decay of the disturbance between the tube wall, X = 0, and the contact dis-
continuity X = D up until the time when it is not appreciably affected by the energy which is
reflected from the shock.

More generally, we consider stretching waves in an elastic slab which is bounded by material
planes, or interfaces, X = 0 and X = D which are normal to the axis of stretch. Each bounding
plane separates the enclosed medium from some other elastic medium which is also being stretched
along the same axis. However, each surrounding medium is of semi-infinite extent in the direction
of stretch in the sense that its deformation at the interface with the enclosed medium is not
significantly influenced by the energy which may be reflected from its other boundary. In
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general, the interfaces are free surfaces: their motions are not known a priori, but must be calcu-
lated as part of the solution. The important exception to this configuration which we also
consider is when one, or both, of the surrounding media is replaced by a rigid boundary at
which the material velocity does not change, or by a perfectly free boundary at which the normal
traction does not change. All four of the examples quoted are special cases of this general formu-
lation.
4.1, Amplitudes of reflected and transmitted pulses at an elastic—elastic interface

The analysis of free vibrations is divided into two distinct parts. In the first part only the
change in the amplitude of a pulse as it moves to and fro from boundary to boundary together
with the amplitudes of the transmitted pulses are calculated. No account of the detailed shapes
of these pulses is given. This rather crude, but sometimes sufficient, information can be obtained
without restricting the forms of the equations of state of the bounded and surrounding media.
The results are quite general. In the second part of the paper we give a detailed analysis of some
important free vibrations. This problem is much more difficult than that discussed in the first
part. To obtain results of any significance the form of the equation of state in the bounded
medium must be specified. However, as we show, this form is quite general and can, in fact, be
used to correlate the actual stress—strain relations of a wide variety of elastic media with remark-
able accuracy.

—_—

/
transmitted simple
wave
T=Ig (cg)
transmitted simple
wave incident £ wave

X

T

) D

Ficure 1. The wave system which is set up when an incident pulse is partly reflected and partly transmitted at
an interface between two elastic materials.

To make the idea of a free boundary precise, we first calculate the amplitudes of the reflected
and transmitted pulses which are generated when a large amplitude shockless pulse is incident
at the interface X = 0 after traversing the bounded medium. The width of this pulse is taken to
be small compared with D. In addition, before its front reaches X = 0 the material ahead of it,
and behind it, is in equilibrium in the reference configuration R (see figure 1). Under these
conditions, since the wave is moving into a region where f = 0, according to the relations (2.14)
to (2.17), the pulse is a simple wave in which, irrespective of the signal G(f) carried by the

wave,
f=0 and u=c=g. (4.1)
23-2
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Since 7" and ¢ are known if ¢ is known, in the incident pulse all the state variables u, ¢, T'and e
are known functions of g. Consequently, since
at any particle X -g—‘tg = G'(f) %, o (4.2)
stationary values of g and all the state variables occur simultaneously in the incident pulse at
the arrival of the characteristic wavelets at which the signal function G has stationary values.
These stationary values are good measures of the amplitudes of the state variables in the pulse.
As soon as the front of the incident pulse reaches the interface X = 0 it produces a reflected
a-wave, which moves towards the boundary X = D, and a transmitted wave which moves into
the surrounding medium (see figure 1). Since the incident pulse is affected by the signal carried
by the reflected a-wave, it is no longer a simple wave once its front reaches X = 0. Then, in
general, the stationary values of # at any X do not occur at the same time as those of T, ¢ and e.
However, at the free interface X = 0 these stationary values do again occur simultaneously. In
fact, they occur at the arrival of the f-wavelet whose passage marked the occurence of the
stationary values in the incident pulse. Moreover, these stationary values can easily be deter-
mined in terms of the stationary values of g in the incident pulse. This means that the amplitude
of the disturbance at the interface can be found if the amplitude of the incident pulse is known.
To establish these results first note that the wave which is transmitted into the surrounding
medium to the left of the interface X = 0 is also a simple wave. Consequently, if the subscript L
denotes the value of a variable in this surrounding medium, so that its equation of state reads

Ty, = Tp,(ev), (4.3)
in the transmitted wave, irrespective of the form of the transmitted signal Gy,(fy),
b, = U, = 81 (4.4)

In particular, the relation (4.4) holds at the interface X = 0 where, in addition, since the inter-

face is a material plane
u=u, and T =Tj. (4.5)

Conditions (4.3) to (4.5), together with the equations (2.24) and (2.25), imply that
at X=0, T(c)="T(cy), (4.6)
where ¢c=g+f and ¢, =g—f (4.7)
Equations (4.6) and (4.7) provide an implicit equation for the reflexion function
f=L(g) at X=0. (4.8)

If equation (4.6) is differentiated, with ¢ and ¢, given by equations (4.7), it follows that the local
reflexion coefficient

, i(g)—1
o) = L) = 395, (49)
where the local impedance of the interface
d7y, [dT . . ,
i(g) = dTIL rrs Prodwlped, by equation (2.13), (4.10)

= prayfpa by equations (2.6) and (2.19). (4.11)
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If the interface is perfectly free then, irrespective of the amplitude of the incident pulse,
at X=0, ¢=0 and, by (2.25), = —g. (4.12)
This corresponds to 7 = 0 in equation (4.9). If the interface is rigid, then
at X=0, u=0 and,by(2.25), L=g. (4.13)

This corresponds to ¢ = co. For the special case when the interface separates two media which
obey Hooke’s law 4}, and 4 are constant and ¢ is independent of g.

Since the reflexion function L(g) of the interface is determined by the equations of state of the
media it separates

at X=0, f=1L(g), c=g+L(g) and u=g-L(g),= gL (4.14)
are known functions of g. Consequently, according to equation (4.9),

o (df 0 dw\  (i—1 20 2\, . 0
at =0, (‘amz’éz)*(i+1’i+1’i+1)0<ﬁ>%7- (4.15)

Equations (4.15) imply the stated result: at the interface stationary values of « and ¢, and, con-
sequently, of , ¢, T and ¢, occur simultaneously at the arrival of the characteristic wavelet at
which G has a stationary value. Moreover, stationary values of fand gy, the signal functions of
the reflected and transmitted waves, also occur at this time. If ¢ = g, denotes a stationary value
of G(p) in the incident pulse, which corresponds to the stationary values

T=1T(g) and u=g (4.16)

in the traction and velocity, the corresponding stationary values of 7" and « at the interface
(and in the transmitted wave) are

T, = T(g1+L(gy)) and uy, =g —L(g). (4.17)
The corresponding stationary value of /() and in the reflected wave is
i = L(g1)- (4.18)

The corresponding stationary value of Gy,(fy) in the transmitted wave is

11 = &1 —L(g)- (4.19)

Once the reflected a-wave has travelled some distance, I, say, from X = 0 where it interacts
with the incident pulse it moves into a region where, prior to its arrival, the medium is again in
equilibrium in the reference configuration R. Consequently, while traversing this region the
reflected pulse is a simple wave in which, according to equations (2.14) to (2.17),

¢g=0 and ¢= —u=4f (4.20)

Again stationary values of the state variables occur simultaneously and can easily be found from
the stationary value of any state variable in the incident pulse. In particular, the stationary
values of the traction and particle velocity in the reflected pulse which are associated with the
stationary value = g, in the incident pulse are

T=T(f) = T(L(g)) and u=—f=~L(zg). (4.21)
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This, then, completes the problem of calculating the amplitude of the state variables in the
transmitted and reflected waves, together with their amplitudes at the interface, from the pre-
scribed value of any one state variable in the incident pulse.

4.2. Multiple reflexions

Now that the change in the amplitude of a pulse after a single reflexion from a free boundary
has been calculated, it is a simple matter to calculate its change in amplitude after multiple
reflexions from both free boundaries. To do this we must first define the functions which describe
the reflexion properties of the interface X = D.

If a subscript R denotes the value of a state variable in the medium to the right of the interface
X = D, so that the equation of state of this medium reads

T = Tr(cr), (4.22)
then, by the same reasoning used to analyse conditions at the interface X = 0,
at X=D: g=R(f), (4.23)
where the reflexion coefficient ‘
1) = R(f) =21 =2 (4.2
, , JU)+1
In equation (4.24) the impedance
: Prodr _ Pran
= L at X = D. 4.25
s = Pge — ous (4.25)

For simplicity, let us suppose that g, is the only stationary value of G in the incident pulse.
Then, according to equations (4.21) and (4.22), at the first return of the pulse to the interface
X = D after its first reflexion from X = 0 stationary values of fand g, and, consequently, of all
the state variables, occur simultancously. They are

Ji=L(g) and g = R(f;) = R(L(g))- (4.26)

g, 1s also the stationary value of g in the pulse during its second approach to the interface X = 0.
More generally, the stationary value of g in the pulse during its nth approach to the interface
X=0is

gn = R(L(g,_,)) forall n> 2. (4.27)

In addition, outside the interaction regions which border the interfaces X = 0 and X = D this
pulse is a simple wave in which f = 0. (The widths of the interaction regions vary with n.)
Similarly, the stationary value of fin the pulse during its nth approach to the interface X = D is

So=LR(f,y)) forall nz2, (4.28)

where f; is given in terms of g; by equation (4.26). In this pulse, outside the interaction regions,
g = 0. At the nth arrival of the pulse

at X = 0, the stationary values of (g, f) are (g,, L(g,)): (4.29)
at the nth arrival of the pulse
at X = D, the stationary values of (f, g) are (f,, R(f,,))- (4.30)

For the special case when all three elastic media obey Hooke’s law

L(g) =lg and R(f) =1f, (4.31)
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where the reflexion coefficients / and 7 are constant. Then, according to equations (4.27) and
(4.28),
8n = (h)n—lgl and f:n = (lf)"_%, (4-32)

Ji=lg.. , (4.33)

where, by equation (4.21),

Since [ and r are given in terms of the positive impedances ¢ and j by equations (4.9) and (4.24)

it immediately follows that both
[l <1 and |r| < 1. (4.34)

The equality sign holds in equations (4.34) if the interface is either perfectly free or rigid. Except
for these limiting cases, equations (4.32) and (4.34) predict that both |g,| and | f,|, and con-
sequently |«| and |¢|, decrease as z increases.

In some of the processes which can be described by the analyses presented in this paper it is
not the nature of the disturbance in the bounded medium which is of primary interest but that
of the transmitted pulses. A good example of this occurs in an infinite electrical transmission line.
Here, typically, the responses of the surrounding media could be linear and only that of the
bounded medium (such as a ferrite) nonlinear. The whole aim of inserting this element into the
line is to shape the transmitted wave. For completeness then, we give the stationary values of gy,
in the pulses which are transmitted to the left of X = 0 and the stationary values of f in the
pulses which are transmitted to the right of X = D. Since all these pulses are simple waves, once
these stationary values are known the corresponding stationary values of all the state variables
can readily be determined. The stationary value of gy, in the nth transmitted pulse is given by a
direct generalization of equation (4.19). It is

Zun = &n—L(g,). (4.35)

By using a similar argument, it follows that the stationary value of fi in the nth transmitted
pulse is

Jea =Jo—R(f0)- (4.36)

Up to now, to simplify the discussion, it has been assumed that the disturbance in the elastic
slab is generated by the passage of a pulse whose width is small compared with D. This insured
that the interaction regions [y, and I did not fill the whole slab. If this restriction is dropped so
that the forward and backward waves interact for all X in 0 < X < D there is no simple wave
region in the slab. However, because the transmitted waves are still simple waves, stationary
values of g and f and consequently of all the state variables do still occur simultaneously at the
boundaries. They are still given by equations (4.29) and (4.30) with the g, and f,, related by
equations (4.27) and (4.28).

It should be noted that the results described in this section have been derived by using purely
algebraic manipulations. The results are only strictly valid up until the time when a shock forms
and they give no information about the times at which the stationary values occur.

Although in most of this paper we are mainly concerned with exact results, it should perhaps
be noted that under certain conditions the results describing conditions in the bounded medium
continue to hold to a good approximation even when the bounding media are inhomogeneous
so that the transmitted pulses are not simple waves. For it has been shown by Varley & Cumber-
batch (1970) that the first of the relations, ¢;, = uy, in equation (4.4), still continues to hold to a
good approximation at the interface X = 0 if the widths of the transmitted pulses are small
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compared with a length scale defined by the stratification. The relation also holds to a good
approximation if the bounding media are viscoelastic and the durations of the pulses are short
compared with their relaxation times.

5. DECAY OF A PULSE IN FULLY SATURATED SOIL

To illustrate the general results which were established in §4 we consider the decay of a
pulse as it moves back and forth in a layer of fully saturated soil which is bounded by sea water
from above and by rock from below. The pulse can be thought of as triggered in the rock at a
depth below the soil-rock interface which is large compared with D. Then the pulse is essentially
plane as it traverses the layer. When the pulse reaches the soil-rock interface after travelling
through the rock, because the impedance of the interface is so large, most of its energy is reflected
back into the rock and only a small part is carried by the pulse which is transmitted into the
soil. It is this transmitted energy which generates the disturbance in the soil and, ultimately,
the water above it. For simplicity, we will assume that for all subsequent reflexions of the pulse, the soil—
rock interface acts as a rigid boundary.

According to Cole (1948) the dynamic pressure-density relation for sea water is well approxi-
mated over a wide pressure range by the formula

Pro4i. [(pL )7 ]
= 4 LLOLO T ) g 5.1
b1, = Pro v oro (5.1)

where p,,o and 4y, are the density and sound speed in the water when it is at uniform pressure py,q.
Equation (5.1) also relates the pressure and density in the isentropic flow of an inviscid, poly-
tropic gas. For sea water, typically, the exponent y = 7.15; for a gas y = 1.40. In terms of the
traction 71, and the strain ¢;, equation (5.1) reads

Prodt
L, = TLWL?,L-OU —(1+e)7, (5.2)
which, according to equations (2.9) and (2.10), gives
v — 1 ‘1, )—2/(7’“1) ( Y- 1 ¢y, )(7+1)/(y—-1)
1 + = - H A 1 = A 4 - 5'3
€y ( 5 _—ALO 1 Lo 2 4., (5.3)
_ Puodiol ([ _v—1 ¢, \¥O-D
and Ti,= TL0+—7 [1 (1 = . (5.4)

Fully saturated soil is an example of a material which hardens in compression. Figure 2 shows
a typical relation between stress and strain during its dynamic compression. These results are
taken from the experiments of Liahov (1964). In the same figure the relations between stress
and strain during the dynamic compression of dry sand and clay silt have also been depicted.
These results are due to Allen et al. (1957) and Ginsburg (1964). The stress and strain scales have
been weighted so that these relations are correlated as closely as possible. During compression all
these materials harden in the sense that the local tangent modulus increases until the material
becomes almost rigid. During unloading the dry sand and clay silt do not, in general, follow the
same stress—strain curve as they do in loading. However, according to Cristescu (1967), if there
is no seepage so that the soil remains fully saturated, as it does in the ocean bed, this hysteresis is
negligible. Accordingly, in what follows, it is assumed that the dynamic response of the saturated
soil is always elastic.
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Only pulses which compress the soil relative to its undisturbed state will be considered. If
the strain is computed relative to this state then the equation of state of the saturated soil is
curve fitted by an expression of the form

T =Ty+3e1py A2[(1 —efer)—* —1]. (5.5)
This relation is represented by the full curve in figure 2. The fit is remarkably good for
0 < ¢fer < 0.85.

For a typical locking strain ¢; = — 19, this corresponds to a compressive strain —e = 0.289%,. Itis
shown in §8 that the theoretical stress—strain relation (5.5) is one of a class for which equations
(2.12) can be integrated. Although this relation gives a highly idealized approximation to the
actual stress—strain relation in the vicinity of the locking strain ¢ = ¢;, where the local Young’s
modulus E = dT/de is large but not infinite compared with the modulus E, = p,42 at ¢ = 0,

]
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< |
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Ficure 2. Comparison of the experimental stress-strain relations during the dynamic compression of saturated
soil, dry sand and clay silt with the theoretical law

T e -} :I
— =3 (1—-=] -—1].
podie [( 51)

, Theoretical law; x x x, dry sand (Allen ¢f al. 1957); OOO, saturated soil (Liahov 1964);
..... , clay silt (Ginsburg 1964); — —, linear elastic, perfectly hard material.

it does give a much better curve fit than that usually used for locking materials which is depicted
by the broken curve in figure 2. Actually it is shown in §6 that the experimental stress—strain
curves can be approximated much better by other analytic relations which also lead to mathe-
matically tractable governing equations. However, for an equation of state of the form (5.5)
these equations simplify even further. Moreover, for a suitable choice of the parameters ¢; and
E,, this equation of state not only gives a reasonable approximation to the behaviour of saturated
soil but also to dry sand and clay silt during compression.

To simplify the algebra, in what follows it is convenient to work with the normalized variables

(da E)ﬂg) = (361A0)_1(u, c,f,g). (5°6)

24 Vol. 273. A,
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278 H. M. CEKIRGE AND E. VARLEY
Then, when (5.5) holds,

F=Z=1-(1-2), Z:%:U—z)—% (5.7)
and T=§771{,}0%=_i_5= (1-&)~+—1. (5.8)

The corresponding variations of the state variables as functions of 7 in the incident pulse where
f =0 are drawn in the top right quadrant of figure 3. Only variations of g over the range
0 < 7 < 0.5 are considered. This corresponds to ¢ varying in the range 0 < ¢ < 0.875. For larger
values of ¢ the simple formula (5.8) does not give a good quantitative fit to the experimental data.

-

pulse f=0

soil /water interface

fr e o e e s e s e s o6

S S W,

0.2
|

0.2 04 S
soil/rock interface

[
T ~fAg 04
pulse g=0

with g in the incident pulse and at the soil/water interface, and with fin the reflected pulse and at the soil/
rock interface. To calculate the maximum value of — f]J4, at the soil/water interface given the maximum value
of —g/4, in the incident pulse follow the broken lines. To calculate the corresponding maxima of the state
variables s follow the dotted lines. To calculate the maxima of —f]4, in the reflected pulse and the maxima
of —f]4, and —g[4, at the soil[rock interface continue to follow the broken lines. To calculate th ecorres-
ponding values of the state variables follow the dotted lines. The maxima value of —g/4, at the soil/rock
interface is identical with that in the pulse during its second approach to the soil/water interface. By making
n similar circuits the reduction in the amplitude of the pulse after n reflexions from both interfaces can be
calculated.

To obtain the relation between fand g at the soil-water interface the procedure described in
§4 is used. T'given by the expression (5.8) is equated to T}, given by the expression (5.4) with

e, =u and Ty, — T, (5.9)
.. o F__C f.Q v—1_ \2r-n
This yields, at X=0: T= — =3 [(1+ 5y Su) —1{, (5.10)

1
where c=g+f and a=g—f. (5.11)
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In equation (5.10), iy = Produo onq 5 —Syel-é—”— > 0. (5.12)
Pody Ay

When |3i| < 1 the relation (5.10) can be approximated by the linear relation
¢ =1tgll, Or ¢=1iyU, (5.13)

which, together with the relations (5.11), imply that

=

A typical example of the reflexion function f = L(g), which results from the relations (5.10)
and (5.11), is depicted in the upper left quandrant of figure 3. This corresponds to

Go—1_
i0+1g' (5.14)

(Pos PLo) = (2,1) gfcm?; (4, Are) = (0.2,1.5)km/s, and & = —0.333%, (5.15)

which, with y = 7.15, yields
ip=3.750 and ¢ =0.953x10"2, (5.16)

The values (5.15) have been taken from Cristescu (1967) and Hampton & Huck (1968). Because
i, > 1, a small amplitude compression pulse in which g > 0 is reflected as a compression pulse
in which f > 0. However, its amplitude is cut by almost half and a large part of its energy is
transmitted to the water. This contrasts with the situation when the interface is with air. Then,

typically,
Pro = 1.2x1073glcm3, Ap,=0.346km/s and vy = 1.40. (5.17)

These values yield o = 1.04x 10" and &= 0.813x1072 (5.18)

At this interface, because 7, < 1 a small amplitude compression pulse is almost totally reflected
as an expansion pulse and little energy is lost to the atmosphere.

According to figure 3 at the soil-water interface f at first increases and then begins to decrease
as g increases. The maximum value of fis 0.126 and occurs when the local impedance ¢ = 1 at
Z = 0.394. This implies that no matter how close ¢ is to its limiting value unity in the incident
pulse, the maximum strain induced by the reflected pulse outside the interaction regions corres-
ponds to ¢ = 0.330. The maximum compression at the interface, however, is larger than its
maximum in the incident pulse. For example, if the maximum value of ¢ in the incident pulse
is 0.5, which corresponds to a maximum value of ¢ = 0.875, then the maximum value of ¢ at
the interface of 0.615, which corresponds to ¢ = 0.943.

In addition to the reflexion function, the variations of the state variables #, ¢, T and ¢ at the
soil-water interface are also plotted as functions of g in the top left quadrant of figure 3. Their
variations in the reflected pulse where & = 0 are also plotted as functions of f in the bottom left
quadrant and, finally, as functions of f at the soil-rock interface in the bottom right quadrant.

Here, because @ = 0, _
at X=D, z=7(=ER()). (5.19)

Figure 3 can readily be used to follow the decay of the disturbance in the soil. To determine
f1, the maximum value of f at the soil-water interface, and g,, the maximum value of g atthe
soil-rock interface, from the maximum value of g (= g;) in the incident pulse follow the broken
lines. To determine the corresponding values of the state variables at the interface and outside
the interaction regions follow the dotted lines. The corresponding values of f,, and g, are obtained
by making z similar circuits.

24-2
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280 H. M. CEKIRGE AND E. VARLEY

6. DECAY; OF A VIBRATION IN A SHOCK TUBE

As another application of the results which were derived in §4, in this section we describe
some of the features of the vibration which results when a perfect gas which is contained at a
high pressure between the closed end of a shock tube and a diaphragm is suddenly released
when the diaphragm bursts. The broad features of the initial motion are well known and are
discussed, for example, by Courant & Friedrichs (1948). They are illustrated in figure 4. Initially
the discontinuity at the diaphragm produces a constant strength shock wave which moves away
from the closed end of the tube and a centred expansion wave which moves towards it. The gas
in the region between these waves is initially in uniform motion and is at a uniform pressure.
The temperature and sound speed in this region, however, are only piecewise uniform. They are
discontinuous at the contact surface, or material plane, X = D which was produced at the cross-
section occupied by the diaphragm when it burst. Initially, this contact discontinuity, which
separates particles which have been processed by the shock from those which have not, moves
away from the closed end of the tube with the constant speed of the flow.

\ —contact discontinuity

\ =

~rigid wall

7 AN

centred // compressed air
/

transmitted wave

<« wave W shock
uncompressed air

P X

/

0} x=D
Ficure 4. Wave motion produced in a shock tube by removing a membrane separating gas
under high pressure from air at atmospheric pressure.

Once the expansion wave reaches the end X = 0 it is totally reflected as an expansion wave.
Then it catches up with the contact discontinuity where it is partially reflected and partially
transmitted. Since the transmitted wave is moving into a uniform region it remains a simple
wave until it too is partially reflected by the shock. The analysis presented below is only valid
up until the time when no shocks form in the region 0 < X < D, or when the energy which is
reflected from the transmitted shock has a significant effect on the disturbance in this region.

For simplicity, only the special case when the initial temperatures of the gases on both sides
of the diaphragm are equal will be discussed. Then, if (g, p,) denote the pressure and density
in the contained gas before the diaphragm is ruptured and if (p.,, po,) denote their values in the
gas to the right of the diaphragm, the equilibrium sound speeds in the two gases are equal and

are given by : )
7110) (mo)

a, = (22) = (£=2) . 6.1

° (Po Poo (6.
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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. I 281

In what follows, to avoid messy algebra, it is convenient to measure all pressures in units of p,
and all velocities in units of @,. Then, with this convention, the usual shock conditions (see
Courant & Friedrichs 1948) imply that in the uniform flow behind the shock

2 M2-1 2y ) % 2 M2-11}
o= AT o= | Ty (1) 515 (6.2)
and bro = b | 14— (M2 1) (6.3)
RO © y+ 1 ) .
where M is the shock speed. In the gas between the wall X = 0 and the contact discontinuity
X =D, 9
= — — ('}’“1),27
¢ = g1 —prom), (6.4)
10
-7
& .
- J
(=
|05
'g —O'IMRO
«
<
l
3
] 1 | ] :
1 2 3 4 M 5 6.16
p=1 3x1072 16x1073 5.6x107° 44x1077 (0)

Ficure 5. Variations of the impedance j, the reflexion coefficients r and the initial speed ug, of a contact
discontinuity as a function of M, the Mach number of the shock which is produced when a diaphragm in a
shock tube is ruptured. p,, denotes the pressure ratio across the diaphragm.

To determine M in terms of the pressure ratio p,, < 1 across the diaphragm note that in the
centred expansion wave

where f=0,u=¢ and, consequently, p=[1-—%(y—1)u]>/-D, (6.5)

Since this expansion wave must also border the uniform region where p = pg, and u = ug,,
inserting the expressions given by equations (6.2) for these variables in equation (6.5) yields

_ 2 o W1 y—1 M2—1]EmeD
b = [1+y—-—+1(M ~1)] [ ~ 1A . (6.6)

This relation is plotted in figure 5. As p,, increases in the range 0 < p, < 1, when y = 1.40, M
decreases monotonically in the range 1 < M < 6.16.

6.1. Reflexion from a rigid wall
According to equations (6.4) and (6.5) in the centred expansion wave
a=pr0% =1-4(y—1)g and u=g. (6.7)
Consequently, the flow only remains subsonic in that part of the wave where g varies in the

range 0<o<2/(y+1). 6.8
4 Y
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282 H. M. CEKIRGE AND E. VARLEY

Only that part of the wave where g varies in this range moves towards the closed end of the tube.

There,
at X=0, where u=0, f=g(=L(g), (6.9)

and so, according to equations (2.16) and (6.4),
at X=0, ¢=2¢g and p=[1-(y—1)g]20-D, (6.10)

Since g can only vary in the range (6.8) at the wall, the smallest value of p which can occur
during the first incidence is [(3 —vy)/(y + 1)]>/r=Y, = 0.058 when y = 1.4. This corresponds to
a change in density by a factor 0.011.

6.2. Reflexion from a contact discontinuity

To determine the reflexion function g = R(f) we follow the same procedure which was used
in §4 with the minor exception that the simple wave which is transmitted at the contact dis-
continuity is now moving into a region where # = up, The gas in this region, between the
contact discontinuity and the constant strength shock, is not at the same entropy as that in the
region 0 < X < D. Its equation of state is

e
p=——ago|1—|:— . 6.11
r y—1 1o Pro ( )
In the transmitted simple wave, since
2 (y=1y2y
gr =0, ug=ugy+——o7 aRO[(pR) - 1]. (6.12)
Y= Pro
Consequently, since ug = u and pp = p,
N 92 Y/ (y=1D/2y
at X=D, u=g~f=ugy+——r aRO[( ) —1]. (6.13)
Y= Pro
In addition, according to equation (6.4),
¢ = gof = [ = pr], (6,19

Equations (6.9) and (6.10) determine g and f as functions of p at X = D. Elimination of p from
these equations yields the result that

at X =D: g=r(pa)f+ueps) (= R(f)), (6.15)

so that g and f are linearly related at a contact surface. Since the local reflexion coefficient 7 is
constant, so is the local impedance j = (1 +7)/(1—7). According to equation (4.25), this implies
that

3 ¥
Jj= pRaR, = (p—R) fora gas, = ('25‘—’) at X=D. (6.16)
pa P Po
Since(229) = b
0
T, y—1ME-d 2y ]—%[ B M2—1]~—%
‘[1—y+1 M 1+7/+1(M Uk y+1 M2
<1 for 1< M<6.16, (6.17)

the reflexion coefficient 7 < 0 so that the wave is partially recompressed during its reflexion
from the contact discontinuity.
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The variations of r, j and up, with M, are plotted in figure 5. As p,, increases in the range
0 < po, < 1, rincreases monotonically in the range —1 < 7 < 0 and uy, decreases monotonically
in the range 0 < up, < 5. Once g has been determined from f by equation (6.13) the variations
of u, p and the temperatures 7" and Ty, with f at the contact discontinuity can be determined
from the formulae

u=g—f, p=[1-4y=1) g+, T=T[1-3r—-1)(e+f)]*  (6.18)
and Tr = po Tlpro (2 T).

These variations are depicted in figure 5 for selected values of the parameter p,. Again we note
that the results are only valid if no shocks form in the region 0 < X < D.

Although the flow variables do not attain stationary values in a centred expansion wave, the
results which are established in §4 can still be used to describe the broad features of the decay
of the disturbance in the region 0 < X < D. For example, as the wave moves back and forth
from rigid wall to contact discontinuity periods over which the gas is in a uniform state occur
at both boundaries (see figure 4). These uniform states can 1eadily be calculated. In the first
uniform state at the contact discontinuity, which occurs just after the diaphragm bursts, f= 0
and g = ugp. In the first uniform state at the wall, which occurs after the centred expansion wave
is totally reflected, f = g = up. More generally, in the #th uniform states at X = 0 and X = D,
g and f are given by equations (4.33) and (4.34) with £, and g, determined by equations (4.31)
and (4.32) with L(g) given by equation (6.7), with R(f) given by equation (6.15), and with

g1 =J1 = tpo- - (6.19)
When these calculations are performed they yield the results that

in the nth uniform state at X = 0, g=f= (1+7)"ug, (6.20)
for n > 2, while

in the nth uniform state at X = D, g = (1+7)f= (147)"ug,. (6.21)

The corresponding uniform values of the state variables at the contact discontinuity can be
found from equations (6.18). In particular, in the nth uniform state at X = D forn > 2

u=rf=r(1+r)"2ug, and ¢= (2+47)f= (2+7) (1+7)" Pug,. (6.22)

Since —1 <7 < 0, according to equation (6.22), during its first arrival at the contact dis-
continuity the expansion wave decelerates the flow, reverses it, and leaves it with a uniform
velocity rug, (< 0) until it is again processed by the wave. After this first arrival

¢ = (2+7)uge > o

so that the gas is expanded more than it was after being processed by the centred expansion wave.
From then on, however, ¢ decreases and the gas is compressed, while # remains negative and
decreases in amplitude. Ultimately, a shock forms.
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284 H. M. CEKIRGE AND E. VARLEY

7. DETERMINATION OF THE SIGNAL FUNCTIONS F(f) AND G(¢)

In §4 it was shown how to determine the current values of the state variables at the free
surface X = 0 from the current value of g there, and the values of the state variables at the free
surface X = D from the value of f there. It follows that the variations of the state variables with
t at both boundaries can be determined from this analysis if the variations of g with f at X = 0
and of f with ¢ at X = D can be found. In general, this is a formidable mathematical problem
~ which can only be solved analytically for very special media which are undergoing very special
deformations. The main aim of this and succeeding sections is to introduce a class of equations
of state for which this problem can be considerably simplified analytically and in many situations
solved completely. It is shown in §8 that these equations of state can be used to curve fit the
experimental stress—strain curves of a wide variety of media over a wide range of strain.

To motivate the choice of the form which 4(c) takes for this class of media it is best to use the
characteristic parameters (o, #) as the basic independent variables. Then, according to equations
(2.15) and (2.17), X(e, ) and #(a, B) satisfy the equations

0X ot 0X ot

& = A5 and - A(e) 7 (7.1
where, by equation (2.25), ¢ = F(a)+G(p). (7.2)
When X is eliminated from equations (7.1), they yield the hodograph equation
% . ,dA[0c Ot O O
swap TG [aa B TP ] 0 (7.3)
for t(a, ). This equation can either be written in the form
0 yd4 o
i — L) =
a/),(A ) AV (@) =0, (7.4)
;44 o
i S =
or in the form (A ﬁ) 144 % —G'(p) =0, (7.5)

where a prime denotes differentiation.
The media which are studied in what follows are defined by the property that 4(c) satisfies

an equation of the form dAJde = pdb +vAb (7.6)

where £ and v are material constants. For any such medium, if equations (7.1) are noted, it
follows that equations (7.4) and (7.5) can be written

aaﬁ(A% )+F'(<x) (pt+vX) =0 (7.7)

and (A% aﬂ)+G’(,6’) O (ut—rX) = o. (7.8)
These equations integrate to give

244 2L 4 (1) +vX] /(o) = m() (7.9)

and 240 2 L Lu(i— ) +v(D = X)]G'(B) = n(p). (7.10)

B


http://rsta.royalsocietypublishing.org/

'\
/\
=0\

Y |

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

A A

N

0\

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. I 285

The functions m(e) and n(f) are ‘constants’ of integration in the integration of the character-
istic relations (7.7) and (7.8). In fact

m(t) =4 at X=0 where t=a (7.11)
and n(f) =4 at X=D where t=4p. (7.12)
This identification follows from equations (7.9) and (7.10) and the results that
ot ¢
255 = Dy At constant X, while 2 3 ﬂ =Dz ,3 2 2t constant X, (7.13)
To prove these latter results, which in fact hold for any 4(c), note, for example, that
Dt & D/)’ ot
Do~ da ' Da op
ot DB oX
=% +4-1 Da 35 = by the second of equations (7.1)
= % -4~ 1 X by the first of equations (7.1).
It follows from equations (7.9), (7.10) and (7.13) that at any constant X
ADiDa + [p(t —a) +vX] F'(a) = m(a) (7.14)
and ABDYDL+[p(t—p) +v(D-X)] G (B) = n(p). (7.15)

When all the functions F(«), G(f), m(e) and n(f) are known, and when 4 has been determined
as a function of F and G from equations (7.2) and (7.6), equations (7.14) and (7.15) provide
two nonlinear ordinary differential equations for the variations of @ and g with ¢ at any X.
Once these variations have been calculated the variations of /" and G, and consequently of all
the state variables, with ¢ at any X are known. In §9 we show how to calculate the functions
F, G, m and n for the free boundary problems outlined in §4. Before doing this, however, we
first discuss the various material responses which can be described by an equation of state
which satisfies equation (7.6).

8. MATERIAL BEHAVIOURS WHICH CAN BE DESCRIBED BY EQUATIONS
OF STATE FOR WHICH dd/d¢c = pdb +v4}

In what follows T will denote the traction measured relative to the traction in the reference

state.
8.1, Local curve fit

Although we are primarily concerned with large amplitude deformations, to illustrate the
use of the model equations of state for which 4(c) satisfies equation (7.6) we show how the para-
meters # and v should be chosen to locally curve fit any prescribed behaviour in the vicinity of
some reference state. More precisely, if the prescribed relation between stress and strain in some
neighbourhood of ¢ = 0 takes the form

T = py e+ pe+ g+ 0 ()], (8.1)
then the equation of state obtained by integrating equation (7.6) with
u=1p 74;6,43-%, p=3p85 48 and 4(0) = 4, (8.2)

25 Vol. 273. A.
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286 H. M. CEKIRGE AND E. VARLEY

has a Taylor series representation which agrees with the expansion (8.1) up to terms O(e).
This result follows by direct computation using equations (2.7), (2.9), (2.10) and (7.6). The
only exception to this result is when p = 0, so that ¢ = 0 is a point of inflexion. Consequently,
except for this case, the model equations of state can be used to locally approximate any given
equation of state, at points where the stress can be expanded as a Taylor series in the strain, to
within an error O[¢*]. This choice is appropriate, for example, when investigating small amplitude
deformations which involve weak shocks, or resonant vibrations of crystals, or other small
amplitude deformations where the effect of locally small nonlinearity can accumulate to produce
first-order effects. For example, for a gas

7= L1 (140)] = podife— -+ 1) 43y +1) (r+2) 240, (83

so that, by equations (8.2),
_ 17y +21y—22 L _ 1oy2+15y—26
Y S V) T1T 2

When 1y =14, u= —1.5545% and » = 0.3545%,
when 7y =3, i

A% and AGE, (8.4)

p= —22143% and v = 0.884;%.

8.2. Global curve fit

The constants # and v can also be chosen so that the corresponding model stress—strain rela-
tions approximate other specified stress-strain relations over a finite range of strain. These
latter relations could either be specified analytically, as for a gas, or graphically, as for saturated
soil. The purpose of curve fitting these exact or experimental relations (which henceforth will
be denoted by the subscript E) by the model relations is that many problems can be solved
exactly for the latter but not for the former. In practice, most of the stress—strain relations for
solids are determined from experimental data. In general, away from singular points, this data
can be curve fitted by any one of a host of analytic expressions. The class of analytic expressions
used here has the considerable advantage that the resulting equations can be integrated in full generality.
Before a full account of the material response which can be modelled is given, to illustrate the
curve-fitting procedure two examples will be discussed in some detail.

First we note that the equation of state of a gas, given by equation (8.3), can be well approxi-
mated by the model equation of state over a range of strain where the density changes by a
factor of 10! If the reference state R is chosen as the state where the density p, is a maximum
(as it was in the shock tube problem) this corresponds to p and e varying in the range

0.1p, <p<p, and 0<e<9. (8.6)

There are two families of solutions to equation (7.6) which are given by different analytic
expressions. The family which gives the best fit to A(c) for a gas is the one for which

4 ¢
Z = 2 -
N 0y tan (00 +0, Ao) , (8.7)
where A§p = 20,05 and A}y = 20,05 (8.8)
Since, according to equations (2.10),
dT de _1
-& = pOA and a—z =A , (8.9)
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when (8.7) holds L 0510, tan (0,40, 5) -0, (8.10)

. poA(z) 0 1 Y2 0 IAO lAO ’ . }

and e =ey— (0,0,)1 [Cot(00+01£—)+01£—], (8.11)
0 0

When it is specified that the model equation of state must model the reference state exactly,
without loss of generality, the constants of integration in the expressions (8.10) and (8.11) have

the values
0, = cot?0,, t,= —0Oi'cotf, and ¢, = 07'tan0,. (8.12)

Then, when ¢=0, A=4, and T =¢=0. (8.13)

When y = 1.4, a good fit} to the stress-strain relation for a gas when p varies over the range
given by equation (8.6), and when it is specified that conditions (8.13) must hold, is when

0, = 0.8928, 0, = —0.3248, 0, = 0.6479, (8.14)

while tp = 2.4834 and ¢, = —3.8343,

TABLE 1. COMPARISON OF EXACT AND APPROXIMATE VALUES OF A(¢), p(¢) AND p(c) FOR A GAS
WITH AN EXPONENT y = 1.4

p varies in the range 0.1p, < p < p, and approximate values correspond to
A = 0.647874, tan® (0.89278 — 0.32482¢/4,).

¢4, Agl4o 4l4, brlbo blbo Pxlpo plpo
0.0 1.000 0.999 1.000 0.990 1.000 1.007
0.1 0.886 0.875 0.868 0.859 0.904 0.909
0.2 0.783 0.768 0.751 0.746 0.815 0.818
0.3 0.690 0.674 0.648 0.644 0.734 0.735
0.4 0.606 0.592 0.558 0.555 0.659 0.658
0.5 0.531 0.520 0.478 0.478 0.590 0.588
0.6 0.464 0.456 0.409 0.409 0.528 0.525
0.7 0.405 0.399 0.348 0.350 0.470 0.467
0.8 0.351 0.349 0.295 0.297 0.418 0.415
0.9 0.304 0.304 0.249 0.252 0.371 0.368
1.0 0.262 0.264 0.210 0.212 0.328 0.326
1.1 0.225 0.228 0.176 0.178 0.289 0.288
1.2 0.193 0.196 0.146 0.148 0.254 0.253
1.3 0.164 0.168 0.122 0.123 0.222 0.222
1.4 0.139 0.142 0.100 0.101 0.193 0.194
1.5 0.118 0.119 0.0824 0.0827 0.168 0.169
1.6 0.0989 0.0992 0.0672 0.0674 0.145 0.146
1.7 0.0827 0.0814 0.0546 0.0548 0.125 0.126
1.8 0.0687 0.0656 0.0440 0.0446 0.107 0.107
1.845 0.0631 0.0591 0.0398 0.0406 0.100 0.0995
With these values, p= —0.522145% and v = —0.80064%. (8.15)

The approximate values of 4(c), p(¢) (= po[1—yT|poA43]) and p(c) are compared with their
exact values in table 1. The maximum error is about 1% %,
For a monatomic gas with y = §, a good fit is obtained when

0, = 0.8420, 0, = —0.3813, 0, = 0-8081»} (8.16)

while ly = 2.3788 and ¢, = —2.9069.

+ How to choose the parameters to obtain the ‘best fit’ will depend on the flow, or deformation, which is
being investigated.
25-2
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TABLE 2. COMPARISON OF EXACT AND APPROXIMATE VALUES OF A(c), p(c) AND p(c) FOR A GAS
WITH AN EXPONENT ¥ = &

p varies in the range 0.1p, < p < p, and approximate values correspond to
A = 0.808114, tan? (0.84204 — 0.38133¢/4,).

¢/4, Agl4, Al4, Pulbo plpo PelPo plpo

0.0 1.000 1.014 1.000 0.992 1.000 1.010

0.1 0.873 0.870 0.844 0.835 0.903 0.912

P 0.2 0.759 0.747 0.708 0.701 0.813 0.819
\/25],//~J 0.3 0.656 0.641 0.590 0.585 0.729 0.732
-~ 0.4 0.564 0.549 0.489 0.486 0.651 0.652
— 0.5 0.482 0.470 0.402 0.401 0.579 0.578
; >_‘ 0.6 0.410 0.400 0.328 0.329 0.512 0.510
~ 0.7 0.345 0.340 0.265 0.268 0.451 0.448

O 25 0.8 0.289 0.286 0.212 0.216 0.394 0.392
Q{( [ 0.9 0.240 0.240 0.168 0.172 0.343 0.341
A8 U 1.0 0.198 0.199 0.132 0.135 0.296 0.295
I O 1.1 0.161 0.163 0.102 0.105 0.254 0.253
= w 1.2 0.130 0.132 0.0778 0.0805 0.216 0.216
1.3 i 0.103 0.105 0.0584 0.0608 0.182 0.183

1.4 0.0809 0.0819 0.0432 0.0452 0.152 0.153

1.5 0.0625 0.0619 0.0313 0.0333 0.125 0.126

1.6 0.0474 0.0450 0.0221 0.0244 0.101 0.101

TaABLE 3. COMPARISON OF EXACT AND APPROXIMATE VALUES OF A(c), p(¢) AND p(¢c) FOR A GAS
WITH AN ISENTROPIC EXPONENT ¥ = 1

PHILOSOPHICAL
TRANSACTIONS
OF

p varies in the range 0.1p, < p < p, and approximate values correspond to
A = 0.41434, tan? (0.99886 — 0.24087¢/4,).

¢/4, Agl4, Al4, pulpo blpo Pxlpo plpo
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.905 0.901 0.905 0.905 0.905 0.905
0.2 0.819 0.813 0.819 0.819 0.819 0.818
0.3 0.741 0.734 0.741 0.742 0.741 0.740
0.4 0.670 0.665 0.670 0.672 0.670 0.669
0.5 0.607 0.602 0.607 0.609 0.607 0.605
0.6 0.549 0.546 0.549 0.552 0.549 0.547
0.7 0.497 0.496 0.497 0.500 0.497 0.495
0.8 0.449 0.450 0.449 0.452 0.449 0.448
) /;if’ﬂ\ 0.9 0.407 0.409 0.407 0.409 0.407 0.406
P ]:_J\ 1.0 0.368 0.371 0.368 0.370 0.368 0.367
] A 1.1 0.333 0.337 0.333 0.335 0.333 0.333
< 1.2 0.301 0.306 0.301 0.303 0.301 0.302
>-( >'* 1.3 0.273 0.277 0.273 0.274 0.273 0.273
o = 1.4 0.247 0.251 0.247 0.247 0.247 0.248
7 8] 1.5 0.223 0.227 0.223 0.223 0.223 0.224
= 1.6 0.202 0.205 0.202 0.202 0.202 0.203
= O 1.7 0.183 0.185 0.183 0.182 0.183 0.184
I O 1.8 0.165 0.167 0.165 0.165 0.165 0.167
=w 1.9 0.150 0.150 0.150 0.149 0.150 0.151
2.0 0.135 0.134 0.135 0.135 0.135 0.136
2.1 0.122 0.120 0.122 0.122 0.122 0.123

2.2 0.111 0.106 0.111 0.111 0.111 0.111
2.3 0.100 0.0942 0.100 0.101 0.100 0.100
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With these values 4= 0685645 and v = —0.848445%, (8.17)

The approximate values of 4(c), p(¢) and p(¢) are compared with their exact values in table 2.
Again the maximum error is about 1} %,

The upper limit of y for a gas is §, the lower limit is 1.0. For comparison, in table 3 the approxi-
mate values of 4(c), p(¢) and p(¢) are compared with their exact values given by

4@ =@ _ B‘_E —_ e—C,[Ao‘
Ay po Po

The approximate values correspond to

0, = 0.9989, 6, = —0.2409, 0, = 0.4143,
while ly=2.6724 and ¢, = —6.4496.
With these values p=—0.310145% and v = —0.74844;%.

The maximum error is again about 1} %,. The values of the parameters have been determined
by the method of least squares.

10 .
B ——
/ ./‘
—
10
] ] J
0 3 6 9

e

Ficure 6. Comparison of the exact stress-strain relations for gases with isentropic exponents ¥ = 1, 1.4 and §
with model stress—strain relations. The strain e varies over the range 0 < ¢ < 9 which corresponds to a
density variation 0.1py < p < py. ———, Model equation; ..... , blpe = (plpe)?-

Gases are examples of elastic materials which soften in extension in the sense that as the strain
¢ increases the Lagrangian sound speed A4 decreases monotonically to zero. For later reference,
in figure 6 we have depicted the variations of 7" with ¢ when y = 1.0, 1.4 and §. The exact and
approximate curves are not distinguishable.

It should be noted that equations (8.7) to (8.11) with the parameters given by equations
(8.14) to (8.17) cannot be used to approximate the behaviour of a gas in the limit as p/p,— 0.
In this limit the exact law (8.3) must be used. For example, equations (8.7) and (8.16) predict
that when y = 1.4 the limiting value of ¢/4, is 2.75: actually, the exact limiting value is 5.0.
The above relations, which provide an excellent curve fit for 0.1py < p < py, cannot also be
used to provide a good fit in the range 0 < p < 0.1p,.

Bell (1968) has shown that during dynamic uniaxial compression many polycrystalline solids
obey a stress—strain law which, away from ez = 0, can be curve fitted by the simple parabolic

law Ty  (eg\}
Ty~ (;1\_1) . (8.18)
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290 H. M. CEKIRGE AND E. VARLEY

In equation (8.18), Ty; (< 0) and ey ( < 0) are any two values of stress and strain which occur
simultaneously. In what follows we take — ey as the maximum compressive strain which occurs
during the deformation and — 7y to be the maximum compressive stress. The law (8.18) only
holds at a particle during compression. If

1 Ty\#
AM = (—2—;)0 ;I\l;) and Cy = %eM:AM (8.19)
denote the values of 4 and ¢ ( < 0) when (7%, ¢i) = (Tyy, €y) then, when (8.18) holds,
Ag (e \F ey (et Ty (c)\}
) e ) e =) (5:20)

Even when Ag(c) is given by the simple expression (8.20) the hodograph equation (7.31)
cannot be integrated. However, to the same approximation that the experimental data can be
curve fitted by the laws (8.20) it can also be fitted by one of the model equations of state for which
the hodograph equation can be integrated. This equation of state does not belong to the same
family as that used to curve fit the response of a gas. It belongs to the other family of solutions
to equations (7.6) and (8.9) for which

A i ¢
il 2 =
4, 75 coth (770+771 Ao)’ (8.21)
where Ay =298 and A}y = 29,9358 (8.22)
T i ¢ ¢
Then, v to+ a7 [ﬂlzg—coth (770+771-A—0>] (8.23)
¢ ¢
and e =ey+ (n17,) 7" [771:4— —tanh (770 +7 Z—)] . (8.24)
0 0
When conditions (8.13) hold
7y = tanh?7,, ¢, =7y;tanhy, and ¢, =y~'cothy,. (8.25)

The laws (8.20) are not valid in some neighbourhood of ¢ = 0. In practice, typically, they
hold when ¢/c¢y; varies in the range

0.1 << < 1, which corresponds to 0.046 < ® o<y, (8.26)

5%

S

M

When —e¢y = 4 x 10~2, which is a typical maximum compressive strain considered by Bell, this
corresponds to ey varying over the range 1.8 x 1073 < —ep < 4x 1072,

Since Bell’s law predicts that 4,, the Lagrangian speed in the reference state, is unbounded,
it is best to consider A/dy, T[Ty and ¢fey as functions of ¢/cy;. Then, an excellent fit to Bell’s
laws over the range (8.26) is obtained from the model equations

A _ 0.9655 coth? (0.6785 + 1.4088—6—) , (8.27)
AM ‘M
L 0.827440.64375— 0.4569 coth (0.6785+ 1.4088—0—), (8.28)
Iy Ui ‘M
£ = 0.5693+ 1.3809-— 0.9802 tanh (0.6785 + 1.4088—”-) : (8.29)
om Om ‘™m

If Bell’s parabolic law is written — T = 2p,7%( —e)}, (8.30)
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where vy is a material constant, then
Tu= —2po7%eml?, Ay =7len|™t and oy = —$yley|?, (8.31)
while in equation (7.6)
P = —2.0765|ey| % and piy = 2.1506|y| 5.
TaBLE 4. COMPARISON OF THE VALUES OF A(¢), 7'(¢) AND ¢(¢) PREDICTED BY BELL’S PARABOLIC

EQUATION OF STATE, FOR WHICH Ap/Ady = (¢/ey) ™, WITH A MODEL EQUATION OF STATE FOR
wHICH 4 = 0.965544y; coth? (0.67845 + 1.4088 ¢/cy;)

The parameters have been chosen to obtain a best fit as ¢ varies in the range 0.1¢y < ¢ < ¢y.

cfey Ayl Ay Al Ay Tl Ty T[Ty enfex efey
0.1 2.154 2.121 0.215 0.215 0.046 0.046
0.2 1.710 1.743 0.342 0.342 0.117 0.116
0.3 1.494 1.505 0.448 0.450 0.201 0.199
0.4 1.357 1.349 0.543 0.545 0.295 0.292
0.5 1.260 1.242 0.630 0.631 0.397 0.396
0.6 1.186 1.168 0.711 0.711 0.506 0.506
0.7 1.126 1.114 0.788 0.787 0.622 0.624
0.8 1.077 1.076 0.862 0.860 0.743 0.745
0.9 1.036 1.048 0.932 0.931 0.869 0.871
1.0 1.000 1.027 1.000 1.000 1.000 1.000
10 .
—
—
—
/

T| Ty
T

0

0.2 04 0.6 0.8 1.0
eley
F1cure 7. Comparison of Bell’s parabolic stress—strain relation with a model stress—strain relation.
—, Model equation; ..... , Bell’s parabolic law.

Table 4 compares the values of Ay, T and e given by equations (8.20) with the values of
A, T and e given by equations (8.27) to (8.29) when ¢ varies in the range 0.1¢y < ¢ < ¢y The
maximum error in 7 and e is around § %! The maximum error in 4 is 3 %,. In figure 7 the model
stress—strain curve is compared with Bell’s parabolic curve as ¢ varies over the full range

0<c¢<oy
They are not distinguishable as ¢ varies over 97 9, of its range.

8.3. General classification of material responses

Figures 8 to 11 illustrate the various material responses which can be modelled by an appro-
priate choice of the parameters v, # and 4,. Figure 8 illustrates the typical behaviour of a soft


http://rsta.royalsocietypublishing.org/

0
p 8

.
/ |
L

'y
A\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

—%

-
//\\ \\‘
A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

292 H. M. CEKIRGE AND E. VARLEY

elastic material, or, more strictly, of a material which softens relative to its reference state. For
a material, such as aluminum, which softens in tension the Lagrangian sound speed A4 decreases
monotonically from its value 4, at ¢ = 0 to some non-zero asymptotic value 4, as ¢ increases.
Other materials, such as the polycrystalline solids studied by Bell, soften in compression. For
these materials, the condition that p > 0 implies that ¢ can only vary in the range —1 <e¢ < 0
so that the actual limiting value 4, cannot be attained. However, over this range of strain the
smallest value of 4 need not be significantly different from 4,. Once the parameters 4, and
4, have been specified there still remains one other parameter which can also be specified.

T T

-, Ti' -

/
/
[}
)
/
!
/

Ey EO

Ficure 8 Ficure 9

Ficure 8. A typical stress—strain relation for a soft elastic material. The sound speed 4 decreases monotonically
with either increasing or decreasing e from 4, = \/(Eyfp,) at ¢ = 0 to some limiting value Ay, = /(Ex[pp).
The values of E,, E,, and T} can be specified.

Ficure 9. A typical stress—strain relation for an ideally soft elastic material. The sound speed 4 decreases mono-
tonically with either increasing or decreasing ¢ from 4, = /(E,[p,) at ¢ = 0 to zero. The values of E,, the
limiting stress T, and the value of ¢ at which 7" = 0.997] can be specified.

T } T
7
/
/
7/
-~
-/
EO /E°°| e 0’ - e 1
el el
FIcure 10 Ficure 11

Ficure 10. A typical stress—strain relation for a hard elastic material. The sound speed 4 increases monotonically
with either increasing or decreasing e from 4, = \/(Eofpo) at ¢ = 0 to some limiting value 4o, = \/(Ey/[py)-
The values of E,, E,, and ¢; can be specified.

Ficure 11. A typical stress—strain relation for an ideally hard elastic material. The sound speed 4 increases mono-
tonically without bound with either increasing or decreasing e. The values of E,, the limiting strain ¢, and
the value of T at which ¢ = 0.99¢, can be specified.

This can be chosen to control the rate at which 4 varies with ¢ between its two limiting values
4, and 4,. One good measure of this is the value of ¢, = ¢; say, at which the tangents to the
stress—strain curve ate = 0 and |e| = oo intersect. At this point (7}, e) = (poAZe;, e;). For materials
which soften in extension ¢; > 0, for materials which soften in compression ¢; < 0.

When, for all practical purposes, 4., = 0, as it is for a gas during expansion, the medium is
called ideally soft. Then, for materials which soften in extension, no matter how large ¢ the
traction 7" can never exceed a limiting value 71. Similarly, for materials which soften in com-
pression, no matter how large —e¢, — T can never exceed —71. (For a gas 71 = p,, the pressure
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in the reference state.) Once 4, and 77 have been specified the other parameter can be chosen
to control the rate at which the asymptotic value, 71, of 7T'is approached. One of the many ways
to do this is to specify the value of ¢ at which T" = 0.9971.

Figure 10 illustrates the behaviour of a fard elastic material. As either ¢, or —e, increases 4
increases monotonically from 4, to some finite limiting value 4. Collagen tissue and vulcanized
rubbers are examples of materials which harden in extension, foams and soils are examples of
materials which harden in compression. Again, in addition to 4, and 4, ¢; can be specified.
Finally, figure 11 depicts the behaviour of an ideally hard elastic material. Here, if the material
is ideally hard in tension, no matter how large 7, ¢ can never exceed some limiting value e;.
Similarly, if the material is ideally hard in compression, no matter how large — 7, —e¢ can never
exceed some limiting value —e¢;. In addition to 4, and e, the value of 7" at which ¢ = 0.99¢,
can also be specified.

Of course the prescription given above of how to choose the parameters 4,, # and v is some-
what arbitrary. In practice, other choices might be more appropriate. The aim has been to show
that the model equations of state can approximate the basic features of the reponses depicted in
figures 7 to 10.

8.4 Correlation of stress—strain curves
(1) Non-ideal materials

The three parameter family of stress—strain curves describing the responses of non-ideal
materials can be correlated by a one parameter family of curves by simply plotting 7T} against
¢fer. Any curve in this family is uniquely determined once the parameter

e
=4 (>0) (8.32)
has been specified. Materials which soften correspond to M varying in the range 0 < M < 1,
those which harden correspond to M varying in the range 1 < M < co. The special case M = 1
corresponds to a material which obeys Hooke’s law. This follows from the fact that equations
(7.6) and (8.9) have solutions which can be written

T _ 1+ M?tanh¢
= p(p_irMEtannc
T (1+M)[1+M (c M%Hanhg)], (8.33)
e - 3 (s M%+tarl}_1_c'_)] .
L= (14 M )[1+M (c e (8.34)
4 1+ M#%tanh¢)?
and =M (Grramr) (339
. MY ¢
where = T M edy (8.36)
In terms of 4, 4., and ¢;
= 2 =%
e At 2 At T = py Az, (8.37)

P TA, o T T A 1A, e

The family of stress—strain curves described by equations (8.21) to (8.25) are identical to those
described by equations (8.33) to (8.36) when 0 < M < 1. The equivalence is easily verified by

puttlng tanh Mo L (8 38)

— 2 — e
M = tanh?7, and ¢ 1+tanh2170771

in these latter equations.

26 Vol. 273. A.


http://rsta.royalsocietypublishing.org/

|
A

A
/=
-

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

2 ¥

A Y
Iam \
P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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In the limit as M — 0 equations (8.33) to (8.37) imply that

T ¢\t e 1 ¢ \®
n=t-(tvaz) s o=l a) (8.89)
A4 ¢ \7? . 143
and i 1+A_0e; , while £ =0 and v»= —2¢'4;%. (8.40)
According to equations (8.39), when M = 0,
-
77—,;= 1—(1+3e—‘1) . (8.41)
In the limit as A — o0,

T 1 ¢ \3 e ¢\

noal(ra) -1 s () (842
and :%: (1 +ﬁ), while u = 2¢7145% and v = 0. (8.43)

According to equations (8.42), when M = oo,

(-]

oL M=1 ////
~,
//’
0.7
E L
- FR—
0.341
1—
0.1
- 0.0
1 ! ‘ 1 |
0 1 2 3 4

efey

Ficure 12. Typical variations of TJT; with efe; for soft elastic materials. The parameter M = A [4,.
The case M = 0.341 corresponds to materials which satisfy Bell’s parabolic law.

The non-ideal responses are described by equations (8.33) to (8.37) as ¢ varies in the range
0 < ¢ < o0. ¢ remains positive because if the material behaves non-ideally in extension both ¢
and ¢; are positive, while if it behaves non-ideally in compression both ¢ and ¢; are negative.
In figures 12 and 13 the relations between 7777 and ¢fey, which are described by these equations,
have been plotted for typical values of the parameter 4. Figure 11 exhibits curves which des-
cribe the behaviour of soft materials. These curves are bound by the curve M = 0, which corres-
ponds to the law (8.41), and the curve M = 1 which corresponds to Hooke’s law T[Ty = efey.
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The curve which corresponds to M = 0.341 has been included because part of it was used to
curve fit Bell’s parabolic law. Figure 12 exhibits curves which describe the behaviour of hard
materials. They are bound by the curve M = 1 and the curve M = co which corresponds to the
law (8.44).

1.0~
1.001 .
1.1 —
0.8 M=10
=0.65(y=14)
0.6
= -0.0
=
0.4
0.2~
[ 1 1 |
0 1 2 3 4

podie| T,

Freure 13. Typical variations of T[T} with p,A2e/T; for ideally soft elastic materials. The case M = —0.65
corresponds to a gas with isentropic exponent y = 1.4.

(i) Ideally soft materials

There are two families of curves which describe ideally soft materials. The first family is
described by equations (8.33) to (8.37) as M and ¢ vary in the ranges

1<M<ow and -7,<i<0 where coth7,= M?. (8.45)

This is best seen by noting that these equations can be written

T|T1 = (7,— tanh 7j,) ~*[tanh (7, +¢) — ¢ —tanh ﬁo]; (8.46)

podie[T1 = tanh*7,(7, — tanh 7,) " [coth (7, +¢) — ¢ — coth 7],] (8.47)

and A[A, = coth?7, tanh? (7, +¢), (8.48)
where ¢ = —coth®7,(7, — tanh 7,) po 4o ¢/T1. (8.49)

In terms of A4, the limiting stress 73, and the parameter 7,

i = —2coth®7,(7, — tanh 7,) poAO%/Ti} (8.50)
and v = 2coth 7, (7, — tanh 7o) po A3/ T1. '
Note that, according to equations (8.46) to (8.48),

. - T Po A3 4
as o> =T, > 1, T ¢~ ® and A—0—>O. (8.51)

Unlike the parameters 71 and 4, the parameter 7, in the above equations has no immediate
physical interpretation. It can be chosen so that the model equation of state also approximates

some other desired feature of the experimental curve. For example, 7, can be chosen so that
26-2


http://rsta.royalsocietypublishing.org/

'\
s
A \

=%

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Y o ¥

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

OF

A

A

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

296 H. M. CEKIRGE AND E. VARLEY

when T = 0 9973, p,A3¢/T1 has some specified value, € say. The function 7,(¢) can readily be
determined numerically from equations (8.46) to (8.47). It, together with the functions x(e)
and v(e), is plotted in figure 16. Several of the curves of the family described by equations (8.46)
to (8.49) are drawn in figure 14. They are parameterized by

M = —puf[4,v = coth?7,. (8.52)
10~ |
® 1100
| 3.0
|
|
4
i
i
{
7 ! 20
/
/
/
/
E 17
B /
//
4~ 4
// //
/4
7 14
//,
7
7
M-=1
1.-.
1 1 | 1 1
0 1 2
efeg

Ficure 14. Typical variations of T[T} with efe; for hard elastic materials. The parameter M = A,[4,.

Of special interest is the limit as A -1 (7, 0). Then, the usual linear elastic, perfectly soft
response is obtained. According to equations (8.46) to (8.49), in the limit as 77, — 0o, the dominant
behaviour is described by the equations

: T T
p_______()]ifoc = %, ’0——(:’;,303 = 7_,1-{-7_731 COth (ﬁo [1 _Ti]) (8.53)
4 o= T
and y tanh (770{1 —-7—,1]) (8.54)
A(c) given by equations (8.53) and (8.54) satisfies equation (7.6) with
_ pods o podd
n= —2770'0‘?1,10 and v = 2770p°T1°, (8.55)
In the other limit as M — oo (77, 0)
T _ 1pody \*  podi _ [( _1py4, )~1_ ]
= _(1_§T6)’ T e=3I{1-3 T ¢ 1 (8.56)
%
A_(_Lpdy N o 2pds _
and zTO_(l_?—CITc) while g = 3T and v =0. (8.57)
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Figure 15. Typical variations of TJp,A2¢, with efe, for ideally hard elastic materials.

d (Tifpo4d) (—p, v)
o

7o an

-05%-
Ficure 16. The variations of u, v, 7, and 0, with ¢, the value of pyAZe[T; at which T = 0.997), for an ideally
soft material. The variations of BV, 7 and 0, w1th 7, the value of T[p,A42¢ at which ¢ = 0.99¢, are obtained

by replacing ¢ by 7, (Tifpo48) (—p, v) by e43(v, — ), 7, by 7, and 6, by 0.
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If ¢ is eliminated from equations (8.56) they yield the explicit stress—strain law

T pody \7°
_ﬁ_ 1-—-(1-!-—5;7“;1—6) . (8.58)

According to figure 16 as 7, decreases in the range [00, 0] ¢ increases from 0 to a maximum
value of 10.9. If it is specified that py43e/T1 > 10.9 when T = 0.997] the family of curves des-
cribed by equations (8.46) to (8.49) cannot be used. However, the family of curves described
by equations (8.7) to (8.12) can. If we introduce the variable

- 4 0
F= —cot*0,[tan 90—00]p‘h°o(=zzc), (8.59)
where the parameter 0, can take any value in the range 0 < 0, < i, these equations can be
written
T[Ty = (tan0,—0y)1[¢ —tan (0y+¢) +tan 0], (8.60)
~ podAie[Ti = tan* 6, (tan 6, — 0,) "1 [cot (0, +¢) + & — cot 0] (8.61)
and 4[4, = cot?Oytan? (0, +¢). (8.62)

In these equations ¢ varies in the range — 0, < ¢ < 0. The parameter

po = —2cot3fy (tan Oy —0,) poA;%m,}

r ; (8.63)
while v = —2cotf, (tan O, —0,) po A3/ T

Several stress—strain curves belonging to the family of ideally soft materials which are described
by equations (8.59) to (8.62) are also drawn in figure 14. These curves are again parametrized

by
M= —pld,y = —cot?0,, (8.64)

which varies in the range —oo < M < 0. The curve corresponding to M = —0.65 has been
included since this was used to curve fit the stress—strain curve of a polytropic gas with y = 1.4,
In figure 16 the variations of 0,(¢), p(¢) and v(e) as € varies over the range 10.9 < ¢ < 00 are
also drawn. '

In the limit as M — — oo equations (8.59) to (8.63) are identical with equations (8.56) to (8.58).
In the limit as M — 0 they are identical with equations (8.41) to (8.44) with 77 = 77 and

’ ey = Tifpy A3,
(iii) Ideally hard materials -

As for the ideally soft materials there are two families of curves which describe ideally hard
materials. The first family is described by equations (8.33) to (8.37) as M and ¢ vary in the
ranges

0<KM<1 and —7,<i<0 where tanhy,= M}, (8.65)

Over these ranges equations (8.33) to (8.37) can be written in the form

TlpoA%er = tanh®9,(7, — tanh 7,) " [coth (5, +¢) — & —coth ], . (8.66)
| | ¢Jer = (1y—tanh7) ~*[tanh (7,+¢) —é—tanh7] (8.67)
and AJA4, = tanh? g, coth? (7, +¢), ' T (8.68)

where ¢ = —coth?y,(y,—tanhn,) c/erd, (= n1¢[4,). (8.69)
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In terms of 4, the limiting strain e;, and the parameter 7,

w= — 2 coth 770(770 —tanh 770) el_lAO—%} (8.70)

and v = 2coth®7,(7, — tanh 7,) e 1 g %

Again the parameter 7, in the above equations has no direct physical interpretation. It can be
chosen so that when ¢ = 0.99¢, the variable 7/p,A43e: takes some prescribed value, 7 say. The
variations of 5,, # and v with 7 are depicted in figure 16. Several of the curves of the family
described by equations (8.66) to (8.70) are drawn in figure 14. They are parameterized by

M = —pu[A,v = tanh?7,,. (8.71)

In the limit as M — 1 (9, c0) the linear elastic, perfectly hard, response is obtained. According
to equations (8.66) to (8.70), in the limit as 5, co, the dominant behaviour is described by the
equations

_ T e 1 e )
¢ = Aoe, p—ozl—%';l —Z‘l")]o coth (770[1—-6—1] (8.72)
and 4 = coth? (770 [1 —ﬁ]) . (8.73)
4, €1

A(c) given by equations (8.72) and (8.73) satisfies equation (7.6) with
p= —2n,e Ayt and v = 29 1 A5k (8.74)
In thelimitas M — 0 (7,—>0)

T 1 ¢\ e 1 ¢ \3
P A%el - 3[(1-—-?_’ Aoel) _1], ;1- B 1_(1—§ €1 0) <8'75)
A _ 1 ¢\ . _ — 2,1 4-%
and i (1—§ :4-0——“) while # =0 and v =3¢ 145" (8.76)

If ¢ is eliminated from equations (8.75) and (8.76) they yield the explicit stress—strain law

T e\ %
m=3[(1~e—l) —1]. (8.77)

It was this relation which was used to correlate the responses of clays and saturated socils in §5.

The family of curves described by equations (8.66) to (8.70) can be used only when 7 < 10.9.
When 7 > 10.9 the family of curves described by equations (8.7) to (8.12) must be used with
0, = 0,—4m and ¢ = 0,¢[4, varying over the ranges

0<0y<}nt and —-06,<i<0. (8.78)

In terms of e1, 6, and ¢ these equations can be written

T|p,A3er = tan®y(tan 8, — 0y) 1 [cot (6, +¢) +¢ — cot §,], (8.79)

eler = (tan Gy —0,)~1[¢—tan (0,+7¢) +tan 6] (8.80)

and A[A, = tan28,cot? (0, +¢), (8.81)

where ¢ = —cot20, (tan @, —8,) c[4ye1.. (8.82)
The parameter w = 2cotl, (tan G, —0,) ef 1 Ag?

and v = 2cot30, (tan 6,—0,) eflAE%.} (8.85)
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300 H. M. CEKIRGE AND E. VARLEY

Several stress—strain curves belonging to the class of ideally hard materials which are described
by equations (8.79) to (8.83) are also drawn in figure 14. These curves are parameterized by
M = —pulA,v = —tan20),, (8.84)
which varies in the range —c0 < M < 0. In figure 16 we have depicted the variations of 8y,
and v with 7 over the range 10.9 < 7 < oo.
In the limit as M — 0 equations (8.79) to (8.83) are identical with equations (8.75) to (8.77).
In the limit as M — oo they are identical with equations (8.42) to (8.44) with ¢; = ¢; and

T = podier

8.5. Shear waves

For shear waves the independent variable ¢ in equation (7.6) must be replaced by |¢| and the
coeflicients of F’'(a) and G'(f#) must be multiplied by sgne, the sign of ¢. Otherwise, the analysis
follows that for stretching waves.

In practice, of coutse, it is not expected that the model equations of state will curve fit the
experimental stress—strain curves of actual materials as closely as they do those for gases and for
those polycrystalline solids which can be fitted by Bell’s parabolic law. However, by a judicious
choice of the free parameters in these model laws it should be possible to infer the broad features
of the behaviour of many materials from the behaviour of the model materials in similar situa-
tions. Once the skeleton of the actual stress—strain relation has been approximated by one of the
model laws the effect of its flesh can be approximated by using perturbation techniques which
allow the parameters (4, v) in equation (7.6) to vary slowly with 4.

9. REFLEXION AND TRANSMISSION OF A PULSE AT AN INTERFACE

As a first illustration of the use of the model equations of state we show how to calculate the
reflected and transmitted pulses which are generated when a pulse is incident at the free inter-
face X = 0. We suppose that as the pulse passes X = D it is a shockless simple wave for some time
interval 0 < ¢ < tg. In this wave F =0 and at X = D the signal function G(¢) (=u =¢) is
known. For definiteness, this pulse can be thought of as that which is transmitted into the bounded
medium when a pulse travelling through the semi-infinite medium to its right reaches the inter-
face X = D. Alternatively, it can be thought of as the centred expansion wave which is generated
in a shock tube when the diaphragm at X = D bursts.

To calculate conditions at the interface X = 0 equation (7.15) is used. This equation is re-
garded as an ordinary differential equation governing the variation of ¢ with # at any fixed X.
Since G, and consequently 4, are known functions of #(=t) at X = D, for £ varying in the
range [0, 3] the functions G(f) and n(f) (= 4% at X = D) which occur in this equation are
known. As the pulse moves towards the interface X = 0 it remains a simple wave until it is
affected by the reflected wave which is produced once its front £ = 0 reaches X = 0. At all X
in this simple wave F = 0 and 4% = n(f). Then, equation (7.15) integrates to give the usual

result D-X D-X
t=pf+T e = B+ S, 9.1
P+ = P (9.1)
To obtain the result (9.1) from equation (7.15) the fact that A(c) satisfies equation (7.6) has
been used. Condition (9.1) together with the conditions that in the simple wave

u=c=G(p) | (9.2)
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are sufficient to calculate the variations of all the state variables with ¢ at any X. As is typical for
nonlinear problems, these variations are not given as explicit functions of ¢ but parametrically
in terms of the characteristic variable £.

Once the pulse enters the interaction region Iy, neighbouring the interface X = 0 the signal
function F is not identically zero. Consequently, the factor 4% in equation (7.15), which will be
referred to as the interaction term because it is the only term in this equation which is affected
by the signal carried by the a-wave, is not, in general, a known function of (4, X). Accordingly,
equation (7.15) cannot, by itself, be used to calculate the variations of ¢ with £ at all points
of I,. The important exception is at the free interface X = 0, where according to equations (4.8)

d (4.14
and (414 F=L(G) and ¢=G+L(G), (9.3)

so that 4% is a known function of £, = ®(f) say. When this information is inserted, at X = 0
equation (7.15) reads

w(B) S (1—p+2D) (1= p+2D) G (8) = n(B) — () (9.4)
dg ) )

Once the linear first-order equation (9.4) has been solved subject to the initial condition that
when B =0, ¢=D/4,, (9.5)

the variation of G with ¢ at X = 0is known Equation (9.3) then gives F(¢), the signal carried by
the reflected wave, so that the variations of all the state variables at the interface can be calculated,
as can the signal Gy,(¢) (= uat X = 0) carried by the transmitted wave. The solution to equation
(9.4) can, of course, be reduced to a simple quadrature which must, in general, be evaluated
numerically. '

9.1. Reflexion of a centred wave

As an illustration of the above results we consider the reflexion of a shockless centred simple
wave from an interface. Such a wave is produced, and centred, at X = D when 4 decreases
discontinuously from A4, to some value < 4,. In the shock-tube problem this occurs when
the diaphragm bursts. It also occurs when the end of a string which is made of a material which
softens in extension is suddenly pulled. A shockless centred wave also occurs when a bar which
is made of a material which softens in compression is suddenly loaded at its end by a compressive
force.

For waves which are centred at X = D equation (7.15) must be interpreted rather carefully
because at this singular point G changes by a finite amount over a vanishingly small variation in
B (= tat X = D). The simplest way of deriving the limiting form of equation (7.15) is to consider
the case when the incident simple wave is centred not at X = D but at some point X = X, < D
at some time ¢ = ¢, > 0, and then take the limit (X, ¢)) = (D, 0). In such a centred wave

A= (X, X)[(t—1,). (9.6)
According to equation (9.1) this implies that G(f) is determined from the relation
A(G) = (Xo—=D)[(B—1)- (9.7)

When g, given in terms of G by equation (9.7), is inserted in equation (7.15) it yields the result

that
atany X, A¥(d¢/dG) +[u(t—1,) +v(X,—X)] = 0. (9.8)

27 Vol. 273. A.
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302 H. M. CEKIRGE AND E. VARLEY

To obtain the important equation (9.8) the facts that N(B) = 43(G) and that A(c) satisfies
equation (7.6) have been used. The special values (X, ) = (D, 0) do not introduce any singular
behaviour in equation (9.8). As a check on this equation note that in the simple wave region
where G = ¢ it integrates to give the result (9.6).

At the interface X = 0, where ¢ is given in terms of G by equation (9.3), equation (9.8) predicts
that G varies with ¢ according to the simple law

A¥(dt[dG) + ut+vD = 0. (9.9)
This equation integrates to give
Ayt 1-M G
Dl ——IM—-(I—exp[—//Lfo A—%dG]), (9.10)
where M = — u/A,v. The constant of integration in (9.10) has been determined from the con-

dition that the front of the centred wave at which G = 0 arrives at X = 0 at ¢ = D/A,. Equation
(9.1) determines the variation of G with ¢ at the interface X = 0. Once this has been computed
the variation of F with ¢ follows from equation (9.3).

In what follows the variations of the state variables at the interface X = 0 are compared with
their variations at any point X in the incident centred simple wave. These variations follow
from the fact that in this incident wave

#=c¢ and

(9.11)

For the non-ideal soft materials described by equations (8.32) to (8.37) equations (9.11) imply
that

_% =\ 2
u 1+ M _ Ayt (1+M tanhc) , (9.12)

Aje;  M? & where D—X~ \T+M¥tanhs

and where M < 1. For the class of ideal soft materials described by equations (8.45) to (8.50),
equations (9.11) imply that

podou[Ti = —tanh?7,(7, — tanh 7)1, (9.13
where Ayt|D — X = tanh?7, coth? (7, +¢), } -13)
while for the class of ideal soft materials described by equations (8.59) to (8.63)
podou/Ty = —tan26, (tanﬂo—ﬁo)“lc‘,} (9.14
where Ayt]/(D—X) = tan26,cot? (0,+7). A4)

A centred simple wave cannot be generated in a Hookean material. This is because the
Lagrangian sound speed 4, does not vary with ¢ so that any initial discontinuity which is pro-
duced in ¢ cannot be smoothed by amplitude dispersion, but will propagate as a discontinuity.
This limiting behaviour is described by equations (9.12) as M — 1. To a first approximation

u 1 Ayt
According to equation (9.15), as M — 1, u/4,e; changes by a finite amount in a layer neighbouring
the front of the pulse where
A,t
D-X

—1=0(1-M). (9.16)
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Certain other limiting cases of equations (9.12) to (9.14) deserve special mention. In the
limit when M — 0, (8.41) and equations (9.12) imply that in the incident wave

fo?; = (Di{_lt)—()%— 1 (M =0). (9.17)

In the limit as 7j,— 0 the material response is described by equations (8.56) to (8.58) and equa-
tion (9.13) implies that

R (9.18)

Finally, in the non-uniform limit as %,— co the material response is described by equations
(8.53) to (8.55) and equations (9.13) imply that « is determined from the relation
Ayt . ol = Podo ) —
D—:—X— tanh 7]0C0th [?70(1——7.,1—24 ] as  7g—> 0. (9.19)
According to this relation, p,A4yu/7; can change from zero to any finite value < 1 in a layer
neighbouring the wavefront where

Aot
D-X

=140(e%0) as 7,—>c0. (9.20)

In this layer, to a first approximation, equation (9.19) predicts that

A _ _( Ayt
PoTl %y = (277,)"'1n [1 + i—eho(D_"X—— 1)] (9.21)
In a layer where ﬁo(l —Bg—éu) =0(1) as 7,—>00 (9.22)

equation (9.19) implies that, to a first approximation,

i -%
1_/3(7)]{'1401‘ = 7;7‘;1(1—;%) as  7o—>00. (9.23)

(1) Perfectly free interface

The simplest use of the result (9.10) is to calculate the motion of a perfectly free interface at
which ¢ = 0 and 4 = 4. At such an interface equation (9.10) implies that

v _ oG _ E_ PAg! __M ’M
28—22:)—-—2140_—2(/&A0) ln[l—-l_M(D —-1)]. (9.24)

When the incident pulse is described by equations (9.12), equation (9.24) implies that

u 1+ M M (Ayt
dooy M ln[l“l—M(—ﬁ' )] (5:29)

When the incident pulse is described by equations (9.13) or (9.14), equation (9.24) implies that

p——-"TA" u = tanh37y(7, — tanh 7,) ~*In [1 + cosh? 7]0(1—%} - 1)] R (9.26)
1

or = tan®0, (tan ,— 6,)1In [1 + cos? 00(‘%:—- 1)] . (9.27)

27-2
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304 H. M. CEKIRGE AND E. VARLEY

The range of variation of Ay¢/D in equations (9.24) to (9.27) is determined by the range of
variations of # in the incident wave. If u varies in the range [0, 4] in the incident wave, so. that
G also varies in the range [0, um], then equation (9.24) predicts that, at X = 0, « varies in the
range [0, 2ur]. The value = 0 occurs when 4yt/D = 1, the value u = 2un occurs when

In the limit as M — 1, when the variation of « in the incident pulse is given by equation (9.15),
equation (9.25) predicts that, to a first approximation, the variation of u at the interface is given
by

u 1 (At
—=2In|l——% =1 M—1). (9.2
el L e ICG (9:29)
Consequently, the time variation of « is logarithmic like in the incident wave: only the amplitude
is doubled. In the limit as M — 0, when the variation of # in the incident pulse is described by
equation (9.17), equation (9.25) predicts that at the interface

— =0y, (9.30)

In the limit as 7,0, when the variation of « in the incident pulse is described by equation
(9.19), equation (9.26) predicts that at the interface

P, _ g1 (A ‘) (9.31)

" D

Finally, in the non-uniform limit as 7,00, when the variation of # in the incident pulse is
described by equation (9.19), equation (9.26) predicts that

pt}::lou - ,,70—11n[ + Lo (AD - 1)] as 7y~ 0. (9.32)
Except for the factor 1/2, the variation of « with 4y¢/D described by this equation is identical
with ‘that of u with Ay¢/D — X, which is given by equation (9.21), at the front of the incident
pulse. However, whereas equation (9.21) is only valid near the front of the incident wave where
condition (9.20) holds, equation (9.32) is valid for 1 < 4,¢/D < 5. Equation (9.32) still predicts
that p,4,u/T1 changes rapidly at the arrival of the front at the interface. Now, however, it can
change from zero to any value < 2 rather than from zero to any value < 1 like in the incident
pulse. There is one other important difference. Whereas the limiting value of py4,u/7} can only
be attained asymptotically as A,#/D — X o0 in the incident pulse (see equation (9.23)), at the
interface the limiting value occurs when A,¢/D = 5. This is easily seen by noting that over times
where

%(2_;)%:40”) =0(1) as 7,00, (9.33)
1

equation (9.82) predicts that, to a first approximation,

5 _PoA — 1z-1 _A__l) .
2 T u = 37, (5 ) (9.34)

In figures 17 and 18 we have compared typical variations of « with 4,¢/D at the interface
against their variations with 4,¢/D — X in the incident pulse. The cases M = 0 and 7, = 0 have
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been included. The reflexion from a free surface for a gas has also been included. This is of
significance when discussing the reflexion of a centred wave from a strong contact discontinuity.

The displacement x of the interface can be calculated by integrating equation (9.24). It is
given by

x 1-M ’ .
= 20}y I (4 %) In (144%) — 4], (9.35)
M (At
b b L )
where t* = I—M(D 1), (9.36)

Ayt|(D—X)

F1cure 17. u against 4,¢[(D—X) in an incident centred wave ( ) and u against Ay¢[D (— —) during its
reflexion from a perfectly free interface: non-ideal materials.

= — — o—— — — — — o—

K
=
%
L —
—
1 |
1 2 3

4yt[(D—-X)

Ficure 18, u against 4,¢/(D—X) in an incident centred wave ( ) and u against Ay¢/D (— —) during its
reflexion from a perfectly free interface: ideal materials.
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This relation is depicted in figure 19. For non-ideally soft materials —1 < ¢* < 0, for ideally
soft materials £* > 0. In an ideally soft material the amplitude of /D increases without bound
as the amplitude of the incident pulse increases. By contrast, in a non-ideally soft material, no
matter how large the amplitude of the incident pulse, x/D has a limiting value of

(1 — M2 er M2, (9.37)
In practice the centred simple wave only comprises part of the incident pulse. The simplest

situation to analyse is when the traction remains constant for some time at X = D after changing
discontinuously to produce the centred wave. This occurs in the shock-tube problem, and in a

~

=
P
olm
e =
— ol
=0
L O
=w :NIQ
7)) he
32 3
= S
OU w - 1
Cﬂﬁ 0 i 16
2z
=y
oy
-1
M (4t
1-M\ D
Ficure 19. The variation of the displacement x of a free interface during the reflexion of a centred simple wave.
- +00, ~00
3 I = ,’ 1.1 /l // ,/
11.001 ,' ll / ///
} l, / ;065 7
I / 1,77
R S
- ii} : ] / // /// ~-Q0,
<L, | I [/ 7 9 %
N | | ;7 L
— I 4
| S/
< ) 2_. | // / //
> =T / Vs
> ! /
olm ! / ,;//// M=1001
38 i I g
ﬁd — : Il @/
E O | [ S
@, : /l/
~w iy
Iy
]
y 1 ]
1 2 3
4,t/(D—-X)

Ficure 20. The variation in the duration of a pulse at an interface as a function of its duration at any particle
X in the incident centred wave. The full curves ( ) correspond to a perfectly free boundary at which
the duration of the pulse shortens and the broken curves (- — - -) to a perfectly rigid boundary at which the
duration lengthens. For a Hookean material (A1 = 1) there is no shortening or lengthening.
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string which is suddenly pulled and then held at constant tension. Then, the centred wave
takes the material from one uniform state to some other uniform state. In figure 20 we have
plotted the time interval which separates these uniform states at the free interface as a function
of the time interval which separates them in the incident wave.

(ii) Perfectly rigid interface
Another important use of equation (9.10) is to calculate the variation in traction at a rigid

interface If atX=0, u=0 then G=F=1c (9.38)

and equation (9.10) implies that the variation of ¢ with ¢ is given by

Ayt 1-M e
_5_ = 1+——AT(1—exp[—%,uL A—%dc]) (9.39)
1-M - oyl .
=1 +—r (1 —[coshé+ M?Esinhe]~Y) when 4 is given by (8.35), (9.40)
_ - sinh7, .
= 1+sech ﬂo(s————inh ) 1) when 4 is given by (8.48), (9.41)
= 1+sec?6 _sindy 1) when 4 is given by (8.62). (9.42)
\sin (0, +7)

Once the variation of 7 with ¢ has been calculated from any one of the equations (9.40) to (9.42)
the variations of T, ¢ and ¢ with ¢ can be computed from the appropriate equations which are
given in §8.3. The variations of G and F with ¢ then follow from equation (9.38). If ¢ varies
over the range [0,7m] in the incident wave, then at the rigid interface ¢ varies over the range
[0, 2¢m].

Since z = 0 at the interface it is better to compare the variation of the traction 7 at the inter-
face with its variation in the incident wave. After some algebra, it can be shown that:

1 4.t . ..
- —In [1 ~1T-31 (D——-—X_ 1)] in the incident wave,
as M1, 7= . (9.43)
! [ ( 1)} at the interface;
T ( ) in the incident wave,
when M =0, == (9.44)
Ty -3 .
[ 1] at the interface;
-# o
_ - ( ) in the incident wave,
T, = = = .45
when 7, =0, T e . (9.45)
1- (-—D—) at the interface.

As 7, 00 the variation of T'is given implicitly by the relation

‘X tanh?7, coth? (7,[1— TJT3]) in the incident wave, (9.46)
sinh 77,
o sech T o (T T

D
and by éD_

1] at the interface. (9.47)
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In a layer near the front of the incident pulse where 4,¢/(D — X) = 1+ O(e~%M) equation (9.46)
predicts that »

T o\ o, Aot )
7= (27,) ln[1+;]fe g (D—X_l . (9.48)
At the interface where 4,¢/D = 1+ O(e~%n) equation (9.47) predicts that
%: ﬁo“lln[1+i~ez’70 (‘%t— 1)] (9.49)
When Toll — T|T1] = o(1), (9.50)

equations (9.46) and (9.47) predict that

Agt \ 2
=1 0 . o
o ( D X) in the incident wave,

T

- = (9.51)

0 e A .
275 te f_j‘ at the interface.

1.0\1\

incident pulse

blpo
=
.h

] 2 3
Apt|D-X

Ficure 21. The predicted pressure variation at the closed end of a shock tube during the reflexion of a centred
simple wave compared with that calculated by Owczarek (1964). ——— Denotes theoretical prediction;
1 denote numerical values computed by Owczarek.

In figure 21 we have compared the pressure variation at the closed end of a shock tube which
is predicted by the present theory with that computed by Owczarek (1964). According to equa-
tions (8.10), (8.13) and (9.42) the theory predicts that the pressure variation on the wall is
given parametrically by the relations

by YT 5468 ‘ ( ¢ ) :
£ -1 = —2, +0.9070 — 4+ 0.2794 tan | 0.8921 — 0.03244 — 9.52
bo poA} 4, A, ( )
Ayt ¢
and — = 1.9753 cosec( 0.8921 — 0.3244;4— —1.5375. (9.53)
0

As can be seen from figure 21 as p varies in the range p, < p < 0.1p, the agreement is remarkably
good. The error is of the same order as that in Owczarek’s calculations. He used standard
graphical techniques.

In figures 22 and 23 the variations of 7" with 4,¢/(D — X) in the incident centred wave have
been compared with their variations with 4,¢/D at a rigid interface. Figure 22 describes the
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behaviour of soft materials, figure 23 the behaviour of ideally soft materials. For both classes of
materials the stress rate increases at the boundary. For ideally soft materials 7/7; < 1 and the
increase in stress rate at the boundaries is very marked. However, as can be seen from figure 20
the total duration of a pulse can lengthen considerably at a rigid interface. The increase in
stress rate is due to the increase in stress.

The solution of the rigid interface problem also solves the problem of what happens at the
mid-point of an elastic string which softens in extension when the tensions at both ends

(X=D and X= -D)

are suddenly increased by the same amount. The centred waves produced at both ends interact
near the middle X = 0 where « = 0.

4yt/(D ~X)

F1GUurE 22. T against 4,¢[/(D—X) in an incident centred wave ( ) and T against 4y¢[D (— —) during
its reflexion from a perfectly rigid interface: non-ideal materials.

7T,

0 | |

1 2 3
Ayt[(D—X)

Ficure 23. T against 4yt/(D—X) in an incident centred wave ( ) and T against A¢/D (——— —-) during
its reflexion from a perfectly rigid interface: ideal materials.

28 Vol. 273. A.
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(i) Interface with a Hookean material

It may happen that the interface X = 0 separates two elastic materials which have the property
that although the response of the material to the right is grossly nonlinear for the stress level
which occurs, the response of that to the left remains essentially linear. As a last application of
the result (9.10) we calculate conditions at such an interface during the arrival of a centred
simple wave.

In the Hookean material to the left of the interface

TL = pLOALOCL‘ (9.54:)

Equations (4.6) and (4.5), which express the continuity of normal traction and material velocity
at the interface, then imply that
40

at X=0, u=c¢,=0Gy =m, (9.55)

so that G = %[c +P1:iilo: and F = % [C—ELZ;%)L—O]. (9.56)
According to equations (9.55) and (8.9) at the interface

. %[1 +50—1Aj§?: and - %[1_551‘_4141?], (9.57)

where by = ProAry >0 (9.58)

Pod,

is the impedance of the interface when the materials on either side are in their reference states.
Equations (9.56) define the reflexion function F' = L(G) at the interface. The local reflexion

coeflicient
dF  i,—A[A,

=d6 =i, T,

(9.59)

If the first of equations (9.56) is used to express G in terms of ¢, equation (9.10) predicts that
during the arrival of a centred wave at X = 0 the variation of ¢ with ¢ is determined from the
condition that

At 1-M . _%J'c[ A\E (AN
—7)—- = 1+-—M-(1—‘CXPI:—'§‘U/A0 o (';4—0) +ZO (;% JdC:I) (9.60)
1-M ~ ol - ey
=1l+——(1- [cosh ¢+ M*%sinh ]~ [cosh ¢+ M—%sinh ¢]~Mli)
for non-ideally soft materials, (9.61)
_ o— sinh 7, cosh7j, \coth*mlle
= L+sech®7, [sinh (Mo+7) (cosh (ﬁ0+c')) 4E (9.62)
_ o7 | sinf,  (cos(0,+ 5))001;2 bolio .
or = 1+4sec?0, [sin Oot?) ( cos 0 1 (9.63)

for ideally soft materials. The case of the perfectly rigid interface is obtained from these equations
by letting 7,—co. The case of the perfectly free interface is obtained by letting both ,—> 0 and
¢— 0, while the ratio ¢f¢y(oc ¢fiy) = u. Once the variation of ¢ with ¢ has been determined from
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any of the equations (9.61) to (9.63) the corresponding variation of 7" can be calculated from
equation (8.33), or equation (8.46), or equation (8.60). The variation of u then follows from equa-
tion (9.55).

According to equations (9.61) and (8.33) in the limit

T 2%, 1 [(dyt )
as M——>1, T}——mln [l—m(j~1 ], (9.64:)

In the limit as M — 0, 7" cannot be determined as an explicit function of ¢ but is given by the

Ayt 1 7’)—2 - T B
T_E[H(I'_TI — 24 ln(1_TI)], (M = 0). (9.65)

implicit relation

In the limit as 7, 0 equations (9.62) and (8.46) imply that 7T is related to ¢ by the condition

that . :
At (, T\ 1 ‘
B (toz) el (- [1-7])] 0

The limiting behaviour as 77,—> o0 (M — 1 from values > 1) is of special interest (see figure 13).
In this limit the first of equations (8.53) and (9.56) imply that

T  pody, . ..

T = _TG in the incident pulse (9.67)
while I 2 podogy oy the interface (9.68)

i 144, Tq ' '

These equations imply that if o( < 1) denotes the maximum value of 777 in the centred incident
wave then the maximum value of 7/7; at the interface can never exceed

7 = 20/(1+i,). (9.69)

However, T]7; will only attain the value @ at the interface if the characteristic f-wavelet which
carried the stress level 7" = o7; in the incident wave reaches it. This is always so when ¢, < 1.
Then, since o < 1, T[T can never exceed the value 27,/(1+7,) at the interface. However, when
iy > 1 only those wavelets at which 7T[7; < (1+1,)/2i, in the incident wave reach the interface.
This is suggested by equations (9.67) and (9.68) and the fact that 77 can never exceed unity.
To prove it note that, according to equations (9.46) and (9.62), in that part of the wave

where 7,(1—T[T1)>00 as 7,—>o0, (9.70)

Aot _ T _ . .
DEXZ 1+4 [exp{ —277(,(1 ——7:1)} —exp{—2770}:| in the incident wave, (9.71)

Ayt

4yt 1+, T
D

while =1+4 [exp { - 27, (1 — 5 T)} —exp{— 27‘70}] at the interface. (9.72)
0 1
Equation (9.71) implies that, as 7, — 0o, 771 changes discontinuously from 0 to ¢ in the incident
pulse. Equations (9.69), (9.70) and (9.72) imply that, when ¢, < 1, 7/7; changes discontinuously
from 0 to @ at the interface. When ¢, > 1 condition (9.73) still implies that 77} cannot exceed
2iy/(1+1,) However, as T/T1 approaches unity condition (9.70) is violated so that when 7, > 1
28-2
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312 H. M. CEKIRGE AND E. VARLEY

equation (9.72) does not tell the whole story. In fact, 7/7; cannot exceed unity. This is easily
seen by noting that, according to equations (9.46) and (9.62), in that part of the wave

where 7,(1—T7/T7) >0 as 7,—>00, (9.73)
gt (-2 ) in the incident
r |P'\oox in the incident wave,
1—m = (9.74)
T

—1
7o  (cosh 77,) ~a=Llio (147315 - 1) at the interface.

Consequently, for a large but finite value of 7, in both the incident wave and at the interface, 7"
can only attain its limiting value 73 asymptotically as either 4,i/(D — X), or Ayt/D,—oco. Note
that 77/71 will approach unity at the interface whenever 7/} > (1 +14,)/2i, in the incident wave.

10

(Po 4o/ Tg (F, Gy)

podoGI T

Ficure 24. The amplitudes, F and G;, of the reflected and transmitted waves as functions of G, the amplitude
of the incident wave, at an interface with a Hookean material. In their reference configurations the imped-
ances of the two materials match ({4, = 1) so that sufficiently small amplitude pulses are not significantly
reflected.

Agt|D

Ficure 25. Variation of G and Gy, with ¢ at the interface with a Hookean material when ¢, = 1 during
the reflexion and transmission of an incident centred wave.
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In figure 24 we have depicted typical variations of / and Gy, with G at an interface which
separates a model material from a material which satisfies Hooke’s law. We have taken ¢, = 1
so that the impedances of the two materials match in the reference state and have concentrated
on materials for which A4/4, stays close to unity until 7" approaches its limiting value 71 when
A[A,—0. This means that the reflexion coefficient / (see equation (9.59)) is essentially zero
until 7"approaches 71 where it suddenly changes to unity. Consequently, that part of the incident
pulse in which T/7T; < 1 is transmitted at the interface without appreciable reflexion while that
part in which T approaches its limiting value 7} is almost completely reflected. The reflexion
characteristics of the interface, which are described by equations (9.55) and (9.56), are inde-
pendent of the shape of the incoming pulse. In figure 25 we show G and Gy, vary with ¢ at an
interface with the characteristics depicted in figure 24 when the incoming pulse is a centred
wave.

The results presented in this paper were obtained in the course of research sponsored by the
U.S. Army under contract no. DAADO05-71-C-0389 and monitored by the Ballistics Research
Laboratories, Aberdeen Proving Ground, Md.
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